首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutants with defects in the rejoining of DNA double-strand breaks (dsbs) have been identified and characterised from E. coli and the yeast, Saccharomyces cerevisiae. More recently, 3 mammalian cell mutants with defective dsb rejoining have also been described. These mutants are xrs, XR-1 and L5178Y/S, and they are derived from at least two distinct complementation groups. The aim of this article is to review the current status of the studies with these mammalian cell mutants which are defective in dsb rejoining and, in particular, to compare their properties with those mutants identified from lower organisms. Possible mechanistic differences in the process of dsb rejoining between prokaryotes and lower and higher eukaryotes are discussed. All the mammalian mutants defective in dsb rejoining, are sensitive primarily to ionising radiation with little cross-sensitivity to UV-radiation. This is similar to the rad52 mutants of S. cerevisiae but contrasts to the majority of the E. coli mutants with defective dsb rejoining. Where studied, the mammalian cell mutants show enhanced resistance to ionizing radiation in late S/G2 phase, which, in one case, correlates with an enhanced ability to rejoin dsbs. This, together with other evidence, suggests that two mechanisms of dsb rejoining may exist in higher eukaryotes, one which operates uniquely in S/G2 phase and a second mechanism operating throughout the cell cycle and dependent upon the xrs and XR-1 gene products (although whether the xrs and XR-1 dependent pathways are distinct cannot at present be ascertained). Since duplicate homologues will be present in late S/G2 phase cells, this pathway may involve a recombinational mechanism. The xrs-dependent pathway might involve illegitimate recombination, but the xrs mutants do not appear to have a major defect in homologous recombination (involving plasmid DNA) and in this respect are distinct from rad52 mutants.  相似文献   

2.
Using gapped circular DNA and homologous duplex DNA cut with restriction nucleases, we show that E. coli RecA protein promotes strand exchanges past double-strand breaks. The products of strand exchange are heteroduplex DNA molecules that contain nicks, which can be sealed by DNA ligase, thereby effecting the repair of double-strand breaks in vitro. These results show that RecA protein can promote pairing interactions between homologous DNA molecules at regions where both are duplex. Moreover, pairing leads to strand exchanges and the formation of heteroduplex DNA. In contrast, strand exchanges are unable to pass a double-strand break in the gapped substrate. This apparent paradox is discussed in terms of a model for RecA-DNA interactions in which we propose that each RecA monomer contains two nonequivalent DNA-binding sites.  相似文献   

3.
Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.  相似文献   

4.
Mating-type (MT) switching in homothallic (h> 90 ) strains of Schizosaccharomyces pombe is initiated by a DNA double-strand break (DSB) at the distal end of the expression cassette mat1. The cis-acting smt-s1 mutation C13-P11 reduces the frequency of MT switching. It is a small deletion mapping approximately 50 by distal to the site of the DSB. From the h 90 smt-s1 strain we isolated 13 mutants with a hyperspeckled iodine reaction. In these mutants the frequency of MT switching is increased. The mutations define nine different hsp genes, none of which maps in or close to the MT region. We tested one mutant of each gene for the presence of DSBs at mat1. Curiously, in none of the h 90 smt-s1 hsp strains could DSBs be detected, although some sporulate nearly as efficiently as the h 90 smt-n wild type. The hsp mutations show no effect in smt-0 strains; the smt-0 deletion abolishes MT switching completely. Furthermore, we tested the interaction of hsp1-1 with swi1, swi2 and swi7 mutations. hsp1-1 has no effect in swi2 strains, whereas it increases MT switching in swi7 and, to a lesser degree, in swi1 mutants.  相似文献   

5.
Escherichia coli dam mutants are sensitized to the cytotoxic action of base analogs, cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), while their mismatch repair (MMR)-deficient derivatives are tolerant to these agents. We showed previously, using pulse field gel electrophoresis (PFGE), that MMR-mediated double-strand breaks (DSBs) are produced by cisplatin in dam recB(Ts) cells at the non-permissive temperature. We demonstrate here that the majority of these DSBs require DNA replication for their formation, consistent with a model in which replication forks collapse at nicks or gaps formed during MMR. DSBs were also detected in dam recB(Ts) ada ogt cells exposed to MNNG in a dose- and MMR-dependent manner. In contrast to cisplatin, the formation of these DSBs was not affected by DNA replication and it is proposed that two separate mechanisms result in DSB formation. Replication-independent DSBs arise from overlapping base excision and MMR repair tracts on complementary strands and constitute the majority of detectable DSBs in dam recB(Ts) ada ogt cells exposed to MNNG. Replication-dependent DSBs result from replication fork collapse at O(6)-methylguanine (O(6)-meG) base pairs undergoing MMR futile cycling and are more likely to contribute to cytotoxicity. This model is consistent with the observation that fast-growing dam recB(Ts) ada ogt cells, which have more chromosome replication origins, are more sensitive to the cytotoxic effect of MNNG than the same cells growing slowly.  相似文献   

6.
Single-strand breaks (ssb) in opposite strands of DNA can be sufficiently near that a double-strand break (dsb) results. A theory is presented by which the maximum number h of base pairs which cannot prevent double-strand breakage can be determined from the rates of production of ssb and dsb. The assumptions required to derive the necessary equations as well as the range of validity of the equations are discussed in detail. In the experiments ssb and dsb were produced by x-irradiation in buffers which do not eliminate indirect effects and were measured by analytical ultracentrifugation. Values of h have been determined in low and high ionic strength and in low ionic strength over a range of temperatures. The values, 2.64 and 15.8, were obtained for high and low ionic strength, respectively.  相似文献   

7.
Mating-type (MT) switching in homothallic (h> 90 ) strains of Schizosaccharomyces pombe is initiated by a DNA double-strand break (DSB) at the distal end of the expression cassette mat1. The cis-acting smt-s1 mutation C13-P11 reduces the frequency of MT switching. It is a small deletion mapping approximately 50 by distal to the site of the DSB. From the h 90 smt-s1 strain we isolated 13 mutants with a hyperspeckled iodine reaction. In these mutants the frequency of MT switching is increased. The mutations define nine different hsp genes, none of which maps in or close to the MT region. We tested one mutant of each gene for the presence of DSBs at mat1. Curiously, in none of the h 90 smt-s1 hsp strains could DSBs be detected, although some sporulate nearly as efficiently as the h 90 smt-n wild type. The hsp mutations show no effect in smt-0 strains; the smt-0 deletion abolishes MT switching completely. Furthermore, we tested the interaction of hsp1-1 with swi1, swi2 and swi7 mutations. hsp1-1 has no effect in swi2 strains, whereas it increases MT switching in swi7 and, to a lesser degree, in swi1 mutants.  相似文献   

8.
Induction of DSBs in the diploid yeast, Saccharomyces cerevisiae, was measured by pulsed-field gel electrophoresis (PFGE) after the cells had been exposed on membrane filters to a variety of energetic heavy ions with values of linear energy transfer (LET) ranging from about 2 to 11,500 keV/microm, (241)Am alpha particles, and 80 keV X rays. After irradiation, the cells were lysed, and the chromosomes were separated by PFGE. The gels were stained with ethidium bromide, placed on a UV transilluminator, and analyzed using a computer-coupled camera. The fluorescence intensities of the larger bands were found to decrease exponentially with dose or particle fluence. The slope of this line corresponds to the cross section for at least one double-strand break (DSB), but closely spaced multiple breaks cannot be discriminated. Based on the known size of the native DNA molecules, breakage cross sections per base pair were calculated. They increased with LET until they reached a transient plateau value of about 6 x 10(-7) microm(2) at about 300-2000 keV/microm; they then rose for the higher LETs, probably reflecting the influence of delta electrons. The relative biological effectiveness for DNA breakage displays a maximum of about 2.5 around 100-200 keV/microm and falls below unity for LET values above 10(3) keV/microm. For these yeast cells, comparison of the derived breakage cross sections with the corresponding cross section for inactivation derived from the terminal slope of the survival curves shows a strong linear relationship between these cross sections, extending over several orders of magnitude.  相似文献   

9.
A method was devised for extracting, from cells of Escherichia coli K12, DNA molecules which sedimented on neutral sucrose gradients as would be expected for free DNA molecules approaching the genome in size. Gamma ray irradiation of oxygenated cells produced 0.20 DNA double-strand breaks per kilorad per 109 daltons. Incubation after irradiation of cells grown in K medium, with four to five genomes per cell, showed repair of the double-strand breaks. No repair of double-strand breaks was found in cells grown in aspartate medium, with only 1.3 genomes per cell, although DNA single-strand breaks were still efficiently repaired. Cells which were recA? or recA?recB? also did not repair double-strand breaks. These results suggest that repair of DNA double-strand breaks may occur by a recombinational event involving another DNA double helix with the same base sequence.  相似文献   

10.
11.
12.
13.
DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity.  相似文献   

14.
DNA双链断裂损伤修复系统研究进展   总被引:4,自引:1,他引:3  
多种内源或外源因素都能造成细胞基因组DNA损伤,细胞内建立了复杂的修复系统来应对不同形式的损伤。其中DNA双链断裂(DNA double-strand breaks,DSBs)作为最严重的损伤形式,主要激活同源重组修复(Homologous recombination repair)和非同源末端连接(Non-homologous end joining)通路。这两条通路都是由多个修复元件参与、经过多步反应的复杂过程。两者各具特点、协同作用,共同维护细胞基因组的稳定性。对其分子机制的阐明为肿瘤放化疗的辅助治疗提供了潜在的作用靶点。  相似文献   

15.
DNA double-strand breaks (DSBs) are highly cytolethal DNA lesions. In response to DSBs, cells initiate a complex response that minimizes their deleterious impact on cellular and organismal physiology. In this review, we discuss the discovery of a regulatory ubiquitylation system that modifies the chromatin that surrounds DNA lesions. This pathway is under the control of RNF8 and RNF168, two E3 ubiquitin ligases that cooperate with UBC13 to promote the relocalization of 53BP1 and BRCA1 to sites of DNA damage. RNF8 and RNF168 orchestrate the recruitment of DNA damage response proteins by catalyzing the ubiquitylation of H2A-type histones and the formation of K63-linked ubiquitin chains on damaged chromatin. Finally, we identify some unresolved issues raised by the discovery of this pathway and discuss the implications of DNA damage-induced ubiquitylation in human disease and development.  相似文献   

16.
Mammalian cells primarily repair DSBs by nonhomologous end joining (NHEJ). To assess the ability of human cells to mediate end joining of complex DSBs such as those produced by chemicals, oxidative events, or high- and low-LET radiation, we employed an in vitro double-strand break repair assay using plasmid DNA linearized by these various agents. We found that human HeLa cell extracts support end joining of complex DSBs and form multimeric plasmid products from substrates produced by the radiomimetic drug bleomycin, 60Co gamma rays, and the effects of 125I decay in DNA. End joining was found to be dependent on the type of DSB-damaging agent, and it decreased as the cytotoxicity of the DSB-inducing agent increased. In addition to the inhibitory effects of DSB end-group structures on repair, NHEJ was found to be strongly inhibited by lesions proximal to DSB ends. The initial repair rate for complex non-ligatable bleomycin-induced DSBs was sixfold less than that of similarly configured (blunt-ended) but less complex (ligatable) restriction enzyme-induced DSBs. Repair of DSBs produced by gamma rays was 15-fold less efficient than repair of restriction enzyme-induced DSBs. Repair of the DSBs produced by 125I was near the lower limit of detection in our assay and was at least twofold lower than that of gamma-ray-induced DSBs. In addition, DSB ends produced by 125I were shown to be blocked by 3'-nucleotide fragments: the removal of these by E. coli endonuclease IV permitted ligation.  相似文献   

17.
We describe a protocol for creating localized DNA double-strand breaks (DSBs) with minimal requirements that can be applied in cell biology and molecular biology. This protocol is based on the combination of 5-bromo-2'-deoxyuridine (BrdU) labeling and ultraviolet C (UVC) irradiation through porous membranes. Cells are labeled with 10 μM BrdU for 48-72 h, washed with Ca(2+)- and Mg(2+)-free PBS(-), covered by polycarbonate membranes with micropores and exposed to UVC light. With this protocol, localized DSBs are created within subnuclear areas, irrespective of the cell cycle phase. Recruitment of proteins involved in DNA repair, DNA damage response, chromatin remodeling and histone modifications can be visualized without any specialized equipment. The quality is the same as that obtained by laser microirradiation or by any other focal irradiation. DSBs become visible within 30 min of UVC irradiation.  相似文献   

18.
The intimate relationship between DNA double-strand break (DSB) repair and cancer susceptibility has sparked profound interest in how transactions on DNA and chromatin surrounding DNA damage influence genome integrity. Recent evidence implicates a substantial commitment of the cellular DNA damage response machinery to the synthesis, recognition, and hydrolysis of ubiquitin chains at DNA damage sites. In this review, we propose that, in order to accommodate parallel processes involved in DSB repair and checkpoint signaling, DSB-associated ubiquitin structures must be nonuniform, using different linkages for distinct functional outputs. We highlight recent advances in the study of nondegradative ubiquitin signaling at DSBs, and discuss how recognition of different ubiquitin structures may influence DNA damage responses.  相似文献   

19.
DNA double-strand breaks (DSBs) are the most hazardous lesions arising in the genome of eukaryotic organisms, and yet occur normally during DNA replication, meiosis, and immune system development. The efficient repair of DSBs is crucial in maintaining genomic integrity, cellular viability, and the prevention of tumorigenesis. As a consequence, eukaryotic cells have evolved efficient mechanisms that sense and respond to DSBs and ultimately repair the break. The swiftness of the DNA DSB response has paved to the identification of sensors and transducers which allowed to generate a hierarchical signaling paradigm depicting the transduction of the damage signal to numerous downstream effectors (Fig. 1). The function of such effectors involve posttranslational modifications through phosphorylation, acetylation, and methylation of the substrates. This review will address the control of DSBs in damaged eukaryotic cells, the physiological processes that require the introduction of a DSB into the genome, and the maintenance of DSBs in non-damaged cells.  相似文献   

20.
Ku recruits XLF to DNA double-strand breaks   总被引:3,自引:0,他引:3  
XRCC4-like factor (XLF)--also known as Cernunnos--has recently been shown to be involved in non-homologous end-joining (NHEJ), which is the main pathway for the repair of DNA double-strand breaks (DSBs) in mammalian cells. XLF is likely to enhance NHEJ by stimulating XRCC4-ligase IV-mediated joining of DSBs. Here, we report mechanistic details of XLF recruitment to DSBs. Live cell imaging combined with laser micro-irradiation showed that XLF is an early responder to DSBs and that Ku is essential for XLF recruitment to DSBs. Biochemical analysis showed that Ku-XLF interaction occurs on DNA and that Ku stimulates XLF binding to DNA. Unexpectedly, XRCC4 is dispensable for XLF recruitment to DSBs, although photobleaching analysis showed that XRCC4 stabilizes the binding of XLF to DSBs. Our observations showed the direct involvement of XLF in the dynamic assembly of the NHEJ machinery and provide mechanistic insights into DSB recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号