首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Bayes prediction quantifies uncertainty by assigning posterior probabilities. It was used to identify amino acids in a protein under recurrent diversifying selection indicated by higher nonsynonymous (d(N)) than synonymous (d(S)) substitution rates or by omega = d(N)/d(S) > 1. Parameters were estimated by maximum likelihood under a codon substitution model that assumed several classes of sites with different omega ratios. The Bayes theorem was used to calculate the posterior probabilities of each site falling into these site classes. Here, we evaluate the performance of Bayes prediction of amino acids under positive selection by computer simulation. We measured the accuracy by the proportion of predicted sites that were truly under selection and the power by the proportion of true positively selected sites that were predicted by the method. The accuracy was slightly better for longer sequences, whereas the power was largely unaffected by the increase in sequence length. Both accuracy and power were higher for medium or highly diverged sequences than for similar sequences. We found that accuracy and power were unacceptably low when data contained only a few highly similar sequences. However, sampling a large number of lineages improved the performance substantially. Even for very similar sequences, accuracy and power can be high if over 100 taxa are used in the analysis. We make the following recommendations: (1) prediction of positive selection sites is not feasible for a few closely related sequences; (2) using a large number of lineages is the best way to improve the accuracy and power of the prediction; and (3) multiple models of heterogeneous selective pressures among sites should be applied in real data analysis.  相似文献   

2.
3.
Genomics has posed the challenge of determination of protein function from sequence and/or 3-D structure. Functional assignment from sequence relationships can be misleading, and structural similarity does not necessarily imply functional similarity. Proteins in the DJ-1 family, many of which are of unknown function, are examples of proteins with both sequence and fold similarity that span multiple functional classes. THEMATICS (theoretical microscopic titration curves), an electrostatics-based computational approach to functional site prediction, is used to sort proteins in the DJ-1 family into different functional classes. Active site residues are predicted for the eight distinct DJ-1 proteins with available 3-D structures. Placement of the predicted residues onto a structural alignment for six of these proteins reveals three distinct types of active sites. Each type overlaps only partially with the others, with only one residue in common across all six sets of predicted residues. Human DJ-1 and YajL from Escherichia coli have very similar predicted active sites and belong to the same probable functional group. Protease I, a known cysteine protease from Pyrococcus horikoshii, and PfpI/YhbO from E. coli, a hypothetical protein of unknown function, belong to a separate class. THEMATICS predicts a set of residues that is typical of a cysteine protease for Protease I; the prediction for PfpI/YhbO bears some similarity. YDR533Cp from Saccharomyces cerevisiae, of unknown function, and the known chaperone Hsp31 from E. coli constitute a third group with nearly identical predicted active sites. While the first four proteins have predicted active sites at dimer interfaces, YDR533Cp and Hsp31 both have predicted sites contained within each subunit. Although YDR533Cp and Hsp31 form different dimers with different orientations between the subunits, the predicted active sites are superimposable within the monomer structures. Thus, the three predicted functional classes form four different types of quaternary structures. The computational prediction of the functional sites for protein structures of unknown function provides valuable clues for functional classification.  相似文献   

4.
O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc.  相似文献   

5.
MOTIVATION: Identifying the location of ligand binding sites on a protein is of fundamental importance for a range of applications including molecular docking, de novo drug design and structural identification and comparison of functional sites. Here, we describe a new method of ligand binding site prediction called Q-SiteFinder. It uses the interaction energy between the protein and a simple van der Waals probe to locate energetically favourable binding sites. Energetically favourable probe sites are clustered according to their spatial proximity and clusters are then ranked according to the sum of interaction energies for sites within each cluster. RESULTS: There is at least one successful prediction in the top three predicted sites in 90% of proteins tested when using Q-SiteFinder. This success rate is higher than that of a commonly used pocket detection algorithm (Pocket-Finder) which uses geometric criteria. Additionally, Q-SiteFinder is twice as effective as Pocket-Finder in generating predicted sites that map accurately onto ligand coordinates. It also generates predicted sites with the lowest average volumes of the methods examined in this study. Unlike pocket detection, the volumes of the predicted sites appear to show relatively low dependence on protein volume and are similar in volume to the ligands they contain. Restricting the size of the pocket is important for reducing the search space required for docking and de novo drug design or site comparison. The method can be applied in structural genomics studies where protein binding sites remain uncharacterized since the 86% success rate for unbound proteins appears to be only slightly lower than that of ligand-bound proteins. AVAILABILITY: Both Q-SiteFinder and Pocket-Finder have been made available online at http://www.bioinformatics.leeds.ac.uk/qsitefinder and http://www.bioinformatics.leeds.ac.uk/pocketfinder  相似文献   

6.
Structural genomics projects aim to provide a sharp increase in the number of structures of functionally unannotated, and largely unstudied, proteins. Algorithms and tools capable of deriving information about the nature, and location, of functional sites within a structure are increasingly useful therefore. Here, a neural network is trained to identify the catalytic residues found in enzymes, based on an analysis of the structure and sequence. The neural network output, and spatial clustering of the highly scoring residues are then used to predict the location of the active site.A comparison of the performance of differently trained neural networks is presented that shows how information from sequence and structure come together to improve the prediction accuracy of the network. Spatial clustering of the network results provides a reliable way of finding likely active sites. In over 69% of the test cases the active site is correctly predicted, and a further 25% are partially correctly predicted. The failures are generally due to the poor quality of the automatically generated sequence alignments.We also present predictions identifying the active site, and potential functional residues in five recently solved enzyme structures, not used in developing the method. The method correctly identifies the putative active site in each case. In most cases the likely functional residues are identified correctly, as well as some potentially novel functional groups.  相似文献   

7.
A major problem in genome annotation is whether it is valid to transfer the function from a characterised protein to a homologue of unknown activity. Here, we show that one can employ a strategy that uses a structure-based prediction of protein functional sites to assess the reliability of functional inheritance. We have automated and benchmarked a method based on the evolutionary trace approach. Using a multiple sequence alignment, we identified invariant polar residues, which were then mapped onto the protein structure. Spatial clusters of these invariant residues formed the predicted functional site. For 68 of 86 proteins examined, the method yielded information about the observed functional site. This algorithm for functional site prediction was then used to assess the validity of transferring the function between homologues. This procedure was tested on 18 pairs of homologous proteins with unrelated function and 70 pairs of proteins with related function, and was shown to be 94 % accurate. This automated method could be linked to schemes for genome annotation. Finally, we examined the use of functional site prediction in protein-protein and protein-DNA docking. The use of predicted functional sites was shown to filter putative docked complexes with a discrimination similar to that obtained by manually including biological information about active sites or DNA-binding residues.  相似文献   

8.
Reversible protein phosphorylation is one of the most important post-translational modifications, which regulates various biological cellular processes. Identification of the kinase-specific phosphorylation sites is helpful for understanding the phosphorylation mechanism and regulation processes. Although a number of computational approaches have been developed, currently few studies are concerned about hierarchical structures of kinases, and most of the existing tools use only local sequence information to construct predictive models. In this work, we conduct a systematic and hierarchy-specific investigation of protein phosphorylation site prediction in which protein kinases are clustered into hierarchical structures with four levels including kinase, subfamily, family and group. To enhance phosphorylation site prediction at all hierarchical levels, functional information of proteins, including gene ontology (GO) and protein–protein interaction (PPI), is adopted in addition to primary sequence to construct prediction models based on random forest. Analysis of selected GO and PPI features shows that functional information is critical in determining protein phosphorylation sites for every hierarchical level. Furthermore, the prediction results of Phospho.ELM and additional testing dataset demonstrate that the proposed method remarkably outperforms existing phosphorylation prediction methods at all hierarchical levels. The proposed method is freely available at http://bioinformatics.ustc.edu.cn/phos_pred/.  相似文献   

9.
The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.  相似文献   

10.
We present a new method for predicting protein–ligand-binding sites based on protein three-dimensional structure and amino acid conservation. This method involves calculation of the van der Waals interaction energy between a protein and many probes placed on the protein surface and subsequent clustering of the probes with low interaction energies to identify the most energetically favorable locus. In addition, it uses amino acid conservation among homologous proteins. Ligand-binding sites were predicted by combining the interaction energy and the amino acid conservation score. The performance of our prediction method was evaluated using a non-redundant dataset of 348 ligand-bound and ligand-unbound protein structure pairs, constructed by filtering entries in a ligand-binding site structure database, LigASite. Ligand-bound structure prediction (bound prediction) indicated that 74.0 % of predicted ligand-binding sites overlapped with real ligand-binding sites by over 25 % of their volume. Ligand-unbound structure prediction (unbound prediction) indicated that 73.9 % of predicted ligand-binding residues overlapped with real ligand-binding residues. The amino acid conservation score improved the average prediction accuracy by 17.0 and 17.6 points for the bound and unbound predictions, respectively. These results demonstrate the effectiveness of the combined use of the interaction energy and amino acid conservation in the ligand-binding site prediction.  相似文献   

11.
The prediction of the secondary structure of a protein from its amino acid sequence is an important step towards the prediction of its three-dimensional structure. However, the accuracy of ab initio secondary structure prediction from sequence is about 80 % currently, which is still far from satisfactory. In this study, we proposed a novel method that uses binomial distribution to optimize tetrapeptide structural words and increment of diversity with quadratic discriminant to perform prediction for protein three-state secondary structure. A benchmark dataset including 2,640 proteins with sequence identity of less than 25 % was used to train and test the proposed method. The results indicate that overall accuracy of 87.8 % was achieved in secondary structure prediction by using ten-fold cross-validation. Moreover, the accuracy of predicted secondary structures ranges from 84 to 89 % at the level of residue. These results suggest that the feature selection technique can detect the optimized tetrapeptide structural words which affect the accuracy of predicted secondary structures.  相似文献   

12.
A novel approach to the problem of prediction of protein-coding regions is suggested. This approach combines the site prediction methods to predict splicing sites and the global coding region prediction methods to choose the best variant of spliced mRNA. One of the advantages of the suggested algorithm is that the resulting mRNA or protein sequence may then be immediately analyzed further. The true mRNA either coincides with the predicted one or ranks high in the list of variants. In the latter situation the predicted mRNA usually differs from the true one in only one or two of several exons. The combined approach allows the use of a priori information (e.g. the putative protein length or the number of exons). It is possible to use additional parameters not considered here, such as the preferred lengths of exons and introns, and particularly the preferred position of introns in the reading frame and the preferred codon position of exon termini.  相似文献   

13.
The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.  相似文献   

14.
Structural class characterizes the overall folding type of a protein or its domain. This paper develops an accurate method for in silico prediction of structural classes from low homology (twilight zone) protein sequences. The proposed LLSC-PRED method applies linear logistic regression classifier and a custom-designed, feature-based sequence representation to provide predictions. The main advantages of the LLSC-PRED are the comprehensive representation that includes 58 features describing composition and physicochemical properties of the sequences and transparency of the prediction model. The representation also includes predicted secondary structure content, thus for the first time exploring synergy between these two related predictions. Based on tests performed with a large set of 1673 twilight zone domains, the LLSC-PRED's prediction accuracy, which equals over 62%, is shown to be better than accuracy of over a dozen recently published competing in silico methods and similar to accuracy of other, non-transparent classifiers that use the proposed representation.  相似文献   

15.
A secondary structure prediction has been made using the available primary sequence data of the proposed carboxy-terminal of rat thyroglobulin. The model predicts 22% alfa-helix, 28% beta-structure and 17% beta turns. Out of the 8 possible carbohydrate acceptor-sites (Asn-x-Ser/Thr), 3 (residues 136, 368, 782) are associated with peptide sequences which favour the formation of beta-turn or loop-structures and are located in high hydrophilic regions. The entire sequence is predicted to be made up of two domains: one of them is highly structured, contains the hormonogenic sites, a cluster of tyrosines and at least one carbohydrate acceptor site.  相似文献   

16.
Predicted protein-protein interaction sites from local sequence information   总被引:2,自引:0,他引:2  
Ofran Y  Rost B 《FEBS letters》2003,544(1-3):236-239
Protein-protein interactions are facilitated by a myriad of residue-residue contacts on the interacting proteins. Identifying the site of interaction in the protein is a key for deciphering its functional mechanisms, and is crucial for drug development. Many studies indicate that the compositions of contacting residues are unique. Here, we describe a neural network that identifies protein-protein interfaces from sequence. For the most strongly predicted sites (in 34 of 333 proteins), 94% of the predictions were confirmed experimentally. When 70% of our predictions were right, we correctly predicted at least one interaction site in 20% of the complexes (66/333). These results indicate that the prediction of some interaction sites from sequence alone is possible. Incorporating evolutionary and predicted structural information may improve our method. However, even at this early stage, our tool might already assist wet-lab biology.  相似文献   

17.
Practical limits of function prediction   总被引:15,自引:0,他引:15  
Devos D  Valencia A 《Proteins》2000,41(1):98-107
  相似文献   

18.

Background

As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins.

Results

A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T) sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP) based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM). When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%). When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor). Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors.

Conclusion

Because of CKSAAP encoding's ability of reflecting characteristics of the sequences surrounding mucin-type O-glycosylation sites, CKSAAP_ OGlySite has been proved more powerful than the conventional binary encoding based method. This suggests that it can be used as a competitive mucin-type O-glycosylation site predictor to the biological community. CKSAAP_OGlySite is now available at http://bioinformatics.cau.edu.cn/zzd_lab/CKSAAP_OGlySite/.  相似文献   

19.
A specific treatment of recurrent structural motifs that represent the local bias information has been proven to be an important ingredient in de novo protein structure predication. Significant majority of methods for local structure are based on building blocks, which still suffer from its inherent discrete nature. Instead of using building blocks, this work presents a new protocol framework for local structural motifs prediction based on the direct locating along protein sequence and probabilistic sampling in a continuous (φ, ψ) space. The protein sequence was first scanned by an algorithm of sliding window with variable length of 7 to 19 residues, to match local segments to one of 82 motifs patterns in the fragment library. Identified segments were then labeled and modeled as the correlations of backbone torsion angles with mixture of bivariate cosine distributions in continuous (φ, ψ) space. 3D conformations of corresponding segments were finally sampled by using a backtrack algorithm to the hidden Markov model with single output of (φ, ψ). For local motifs in 50 proteins of testing set, about 62% of eight-residue segments located with high confidence value were predicted within 1.5 ? of their native structures by the method. Majority of local structural motifs were identified and sampled, which indicates the proposed protocol may at least serve as the foundation to obtain better protein tertiary structure prediction.  相似文献   

20.
Phage display enables the presentation of a large number of peptides on the surface of phage particles. Such libraries can be tested for binding to target molecules of interest by means of affinity selection. Here we present SiteLight, a novel computational tool for binding site prediction using phage display libraries. SiteLight is an algorithm that maps the 1D peptide library onto a three-dimensional (3D) protein surface. It is applicable to complexes made up of a protein Template and any type of molecule termed Target. Given the three-dimensional structure of a Template and a collection of sequences derived from biopanning against the Target, the Template interaction site with the Target is predicted. We have created a large diverse data set for assessing the ability of SiteLight to correctly predict binding sites. SiteLight predictive mapping enables discrimination between the binding and nonbinding parts of the surface. This prediction can be used to effectively reduce the surface by 75% without excluding the binding site. In 63% of the cases we have tested, there is at least one binding site prediction that overlaps the interface by at least 50%. These results suggest the applicability of phage display libraries for automated binding site prediction on three-dimensional structures. For most effective binding site prediction we propose using a random phage display library twice, to scan both binding partners of a given complex. The derived peptides are mapped to the other binding partner (now used as a Template). Here, the surface of each partner is reduced by 75%, focusing their relative positions with respect to each other significantly. Such information can be utilized to improve docking algorithms and scoring functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号