首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An environmental isolate of Salmonella typhi was chromosomally marked with a gfp gene encoding green fluorescence protein (GFP) isolated from Aequorea victoria. The hybrid transposon mini-Tn5 gfp was transconjugated from E. coli to S. typhi, resulting in constitutive GFP production. The survival of S. typhi GFP155 introduced into groundwater and pond water microcosms was examined by GFP-based plate counts, total cell counts, and direct viable counts. A comparison between GFP-based direct viable counts and plate counts was a good method for verifying the viable, but non-culturable (VBNC), state of S. typhi. The entry into a VBNC state of S. typhi was shown in all microcosms. S. typhi survived longer in groundwater than in pond water as both a culturable and a VBNC state.  相似文献   

2.
Aims:  The aim was to characterize the viable but nonculturable (VBNC) state of Vibrio cincinnatiensis and its resuscitation.
Methods and Results:  Vibrio cincinnatiensis VIB287 was cultured in sterilized seawater microcosms at 4°C. Plate counts, direct viable counts and total counts were used. A large population of the V. cincinnatiensis became nonculturable after approx. 50 day at 4°C. Electron microscopy revealed that the VBNC cells changed from rod to coccoid and decreased in size. Resuscitation of VBNC cells was achieved by temperature upshift in nutrition of yeast extract and peptone by addition of catalase or compound vitamin B. The VBNC and resuscitative cells were intraperitoneally injected into zebra fish separately. No death was observed in the group inoculated with the VBNC cells.
Conclusions:  Vibrio cincinnatiensis VIB287 could enter VBNC state in adverse environments. Resuscitation of VBNC cells occurred by addition of compound vitamin B or catalase to VBNC cells containing nutrient. The resuscitative cells might retain their pathogenicity.
Significance and Impact of the Study:  The study confirmed that V. cincinnatiensis could enter into VBNC state in seawater at low temperature and resuscitated. The resuscitative cells retained their pathogenicity, which may be important in future studies of ecology of V. cincinnatiensis .  相似文献   

3.
Edwardsiella tarda is pathogen of fish and other animals. The aim of this study was to investigate the viable but nonculturable (VBNC) state and virulence retention of this bacterium. Edwardsiella tarda CW7 was cultured in sterilized aged seawater at 4 degrees C. Total cell counts remained constant throughout the 28-day period by acridine orange direct counting, while plate counts declined to undetectable levels (<0.1 CFU/ml) within 28 days by plate counting. The direct viable counts, on the other hand, declined to ca. 10(9) CFU/ml active cells and remained fairly constant at this level by direct viable counting. These results indicated that a large population of cells existed in a viable but nonculturable state. VBNC E. tarda CW7 could resuscitate in experimental chick embryos and in the presence of nutrition with a temperature upshift. The resuscitative times were 6 days and 8 days, respectively. The morphological changes of VBNC, normal, and resuscitative E. tarda CW7 cells were studied with a scanning electron microscope. The results showed that when the cells entered into the VBNC state, they gradually changed in shape from short rods to coccoid and decreased in size, but the resuscitative cells did not show any obvious differences from the normal cells. The VBNC and the resuscitative E. tarda CW7 cells were intraperitoneally inoculated into turbot separately, and the fish inoculated with the resuscitative cells died within 7 days, which suggested that VBNC E. tarda CW7 might retain pathogenicity.  相似文献   

4.
The nonculturable state of Vibrio vulnificus and, for comparison, that of Escherichia coli were studied in artificial-seawater microcosms at 5 degrees C. Total cell counts were monitored by acridine orange epifluorescence, metabolic activity by direct viable counts, and culturability by plate counts on selective and nonselective media. Whereas total counts remained constant, plate counts of V. vulnificus suggested nonculturability by day 24. In contrast, direct viable counts indicated significant cell viability throughout 32 days of incubation. As an indication of the metabolic changes that occurred as cells entered the state of nonrecoverability, membrane fatty acid analyses were performed. At the point of nonculturability of V. vulnificus, the major fatty acid species (C16 and C16:1) had decreased 57% from the T0 level, concomitant with the appearance of several short-chain acids. Although the bacteria were still recoverable, a similar trend was observed with E. coli. Electron microscopy of nonculturable V. vulnificus showed that the cells were rounded and reduced in size and contained fewer ribosomes. Mouse infectivity studies conducted with these cells suggested loss of virulence.  相似文献   

5.
Du M  Chen J  Zhang X  Li A  Li Y 《Archives of microbiology》2007,188(3):283-288
The aim of this study was to investigate the viable but nonculturable (VBNC) state of the bacterium. Vibrio alginolyticus VIB283 was cultured in sterilized seawater microcosm at 4°C. Culturability of the cells in the microcosm was monitored by spread plate count (PC) on 2216E agar, PCs declined to undetectable levels (<0.1 CFU/ml) within 90 days. Total cell counts remained constant throughout the period as determined by acridine orange direct count (AODC). The direct viable counts, on the other hand, declined from 1010 to 109 CFU/ml active cells and remained fairly constant at this level by direct viable count (DVC), which indicated that a large population of cells entered into the VBNC state. The VBNC cells could be resuscitated by temperature upshift with and without the presence of nutrition. The resuscitated time were 16 h and 8 days respectively. The resuscitation was not achieved in chick embryos. The morphology of the VBNC, normal and resuscitated cells was studied with scanning electron microscope and flow cytometry. The cells changed from rod or arc to coccoid and decreased in size when entered into the VBNC state. The resuscitated and the normal cells had almost no morphological differences.  相似文献   

6.
The nonculturable state of Vibrio vulnificus and, for comparison, that of Escherichia coli were studied in artificial-seawater microcosms at 5 degrees C. Total cell counts were monitored by acridine orange epifluorescence, metabolic activity by direct viable counts, and culturability by plate counts on selective and nonselective media. Whereas total counts remained constant, plate counts of V. vulnificus suggested nonculturability by day 24. In contrast, direct viable counts indicated significant cell viability throughout 32 days of incubation. As an indication of the metabolic changes that occurred as cells entered the state of nonrecoverability, membrane fatty acid analyses were performed. At the point of nonculturability of V. vulnificus, the major fatty acid species (C16 and C16:1) had decreased 57% from the T0 level, concomitant with the appearance of several short-chain acids. Although the bacteria were still recoverable, a similar trend was observed with E. coli. Electron microscopy of nonculturable V. vulnificus showed that the cells were rounded and reduced in size and contained fewer ribosomes. Mouse infectivity studies conducted with these cells suggested loss of virulence.  相似文献   

7.
AIMS: Physiological responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. METHODS AND RESULTS: Plate counts, direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. Vibrio harveyi incubated at 22 degrees C in nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d in microcosms of 35 ppt and 10 ppt ASW, respectively. In contrast, V. fischeri became nonculturable at approximately 55 and 31 d in similar microcosms. Recovery of both culturability and luminescence of cells in the viable but nonculturable state was achieved by addition of nutrient broth or nutrient broth supplemented with a carbon source, including luminescence-stimulating compounds. Temperature upshift from 22 degrees C to 30 degrees C or 37 degrees C did not result in recovery from nonculturability. CONCLUSIONS: The study confirms entry of V. harveyi and V. fischeri into the viable but nonculturable state under low-nutrient conditions and demonstrates nutrient-dependent resuscitation from this state. SIGNIFICANCE AND IMPACT OF THE STUDY: This study confirms loss of luminescence of V. harveyi and V. fischeri on entry into the viable but nonculturable state and suggests that enumeration of luminescent cells in water samples may be a rapid method to deduce the nutrient status of a water sample.  相似文献   

8.
The direct viable count method, used to detect viable but nonculturable bacteria in aquatic systems, was modified to examine epiphytic populations of Pseudomonas syringae. Viable-population sizes determined from the number of cells that elongated when incubated with yeast extract and nalidixic acid were compared with those determined by the conventional plate count method. The plate count method accurately determined the number of viable cells in epiphytic P. syringae populations in a state of active growth under conditions of high relative humidity. The plate count method also accurately determined the number of viable cells in P. syringae inoculum, or a growing P. syringae population, subject to desiccation stress under conditions of low relative humidity. In epiphytic populations of P. syringae older than 80 h, however, the plate count underestimated the viable-population size by about two- to fourfold, suggesting that up to 75% of the P. syringae population was nonculturable. These nonculturable cells may have entered a starvation-survival state, induced by low nutrient availability in the phyllosphere environment. Epiphytic P. syringae populations undergoing rapid size changes due to growth and death under fluctuating environmental conditions in the field should be accurately enumerated by the plate count method. However, the possible underestimation of viable-population size under some circumstances should be considered in epidemiological studies of phytopathogenic bacteria and when genetically engineered microorganisms in terrestrial ecosystems are monitored.  相似文献   

9.
The direct viable count method, used to detect viable but nonculturable bacteria in aquatic systems, was modified to examine epiphytic populations of Pseudomonas syringae. Viable-population sizes determined from the number of cells that elongated when incubated with yeast extract and nalidixic acid were compared with those determined by the conventional plate count method. The plate count method accurately determined the number of viable cells in epiphytic P. syringae populations in a state of active growth under conditions of high relative humidity. The plate count method also accurately determined the number of viable cells in P. syringae inoculum, or a growing P. syringae population, subject to desiccation stress under conditions of low relative humidity. In epiphytic populations of P. syringae older than 80 h, however, the plate count underestimated the viable-population size by about two- to fourfold, suggesting that up to 75% of the P. syringae population was nonculturable. These nonculturable cells may have entered a starvation-survival state, induced by low nutrient availability in the phyllosphere environment. Epiphytic P. syringae populations undergoing rapid size changes due to growth and death under fluctuating environmental conditions in the field should be accurately enumerated by the plate count method. However, the possible underestimation of viable-population size under some circumstances should be considered in epidemiological studies of phytopathogenic bacteria and when genetically engineered microorganisms in terrestrial ecosystems are monitored.  相似文献   

10.
In this study we investigated the viable but non-culturable (VBNC) state of Aeromonas hydrophila and its virulence in goldfish. Aeromonas hydrophila cultured in a 0.35% NaCl solution at pH 7.5 and at 25 degrees C for 50 days showed the VBNC state. In the VBNC state we were unable to detect viable bacteria by the plate count method but we did find 10(4) cells/ml by the direct viable count microscopical method after staining with fluorescein diacetate and ethidium bromide. The virulence comparison in goldfish showed that bacteria cultured at 25 degrees C for 1 day in a 0.35% NaCl solution were more virulent than bacteria cultured for 28 days. VBNC bacteria showed lower virulence in goldfish compared to 28-day-cultured bacteria by intraperitoneal injection. The results from the study suggest that A. hydrophila can remain in the aquatic environment for prolonged periods in the VBNC state but those cells are not pathogenic to goldfish.  相似文献   

11.
The fate of Streptococcus parauberis in seawater and sediment microcosms at different temperatures (6 and 22 degrees C) was investigated by comparing the survival dynamics of 2 strains of this bacterial species, isolated respectively from diseased turbot and cattle. The turbot and the bovine isolate showed similar survival kinetics, remaining culturable for approximately 1 mo in water and 6 mo in sediment. A slight influence of temperature on the stability of the cells was observed, in that the number of culturable cells was about 1 log10 unit higher at 6 than at 22 degrees C. During the starvation period, the metabolic activity of the cells, after suffering a strong reduction during the first 12 d, stabilized at levels ranging from 20 to 40% of the initial values. However, in all the microcosms, the acridine orange (AO) and 4',6-diamidino-2-phenilindole (DAPI) counts remained at about 10(5) cells ml(-1) throughout the experimental period, even when cells became undetectable by standard plate count methods. The addition of fresh medium to microcosms containing nonculturable cells induced the return to culturability of S. parauberis strains. On the basis of these results, it seems that S. parauberis has the ability to enter into a viable but nonculturable (VBNC) state. Dormant cells of the turbot isolate maintained their infectivity and pathogenic potential for fish.  相似文献   

12.
Using plate counts, total cell counts, and direct viable counts, we examined the fate of cells of Vibrio vulnificus placed into natural estuarine waters during both winter and summer months. Cells inoculated into membrane diffusion chambers and placed into estuarine waters entered into a viable but nonculturable (VBNC) state in January and February, when the water temperatures were low (average, < 15 degrees C). In contrast, when cells in the VBNC state were placed into the same waters in the warmer months of August through November (average water temperature of ca. 21 degrees C), the cells appeared to undergo a rapid (typically, within 24 h) resuscitation to the fully culturable state. These results were independent of whether the cells were in the logarithmic or stationary phase and whether they were encapsulated or not. This study indicates that the inability to isolate V. vulnificus from cold estuarine sites may be accounted for by entrance of the cells into a VBNC state and that recovery from this state in natural environments may result from a temperature upshift.  相似文献   

13.
A conventional plate count is the most commonly employed method to estimate the number of living bacteria in environmental samples. In fact, judging the level of viable culture by plate count is limited, because it is often several orders of magnitude less than the number of living bacteria actually present. Most of the bacteria are in “viable but non-culturable” (VBNC) state, whose cells are intact and alive and can resuscitate when surrounding conditions are more favorable. The most exciting recent development in resuscitating VBNC bacteria is a bacterial cytokine, namely, the resuscitation-promoting factor (Rpf), secreted by Micrococcus luteus, which promotes the resuscitation and growth of high G+C Gram-positive organisms, including some species of the genus Mycobacterium. However, most of studies deal with VBNC bacteria only from the point of view of medicine and epidemiology. It is therefore of great significance to research whether these VBNC state bacteria also possess some useful environmental capabilities, such as degradation, flocculation, etc. Further studies are needed to elucidate the possible environmental role of the VBNC bacteria, rather than only considering their role as potential pathogens from the point view of epidemiology and public health. We have studied the resuscitation of these VBNC bacteria in polluted environments by adding culture supernatant containing Rpf from M. luteus, and it was found that, as a huge microbial resource, VBNC bacteria could provide important answers to dealing with existing problems of environmental pollution. This mini-review will provide new insight for considering the potentially environmental functions of VBNC bacteria.  相似文献   

14.
To elucidate the influence of pipe materials on the VBNC (viable but nonculturable) state and bacterial numbers in drinking water, biofilm and effluent from stainless steel, galvanized iron, and polyvinyl chloride pipe wafers were analyzed. Although no HPC (heterotrophic plate count) was detected in the chlorinated influent of the model system, a DVC (direct viable count) still existed in the range between 3- and 4-log cells/ml. Significantly high numbers of HPC and DVC were found both in biofilm and in the effluent of the model system. The pipe material, exposure time, and the season were all relevant to the concentrations of VBNC and HPC bacteria detected. These findings indicate the importance of determining the number of VBNC cells and the type of pipe materials to estimate the HPC concentration in water distribution systems and thus the need of determining a DVC in evaluating disinfection efficiency.  相似文献   

15.
AIMS: This work analysed factors that influence the induction of viable but nonculturable (VBNC) state in the common enteric pathogen, Vibrio parahaemolyticus. The susceptibility of the VBNC cells to environmental stresses was investigated. METHODS AND RESULTS: Bacterium was cultured in tryptic soy broth-3% NaCl medium, shifted to a nutrient-free Morita mineral salt-0.5% NaCl medium (pH 7.8) and further incubated at 4 degrees C in a static state to induce the VBNC state in 28-35 days. The culturability and viability of the cells were monitored by the plate count method and the Bac Light viable count method, respectively. Cells grown at the optimum growth temperature and in the exponential phase better induced the VBNC state than those grown at low temperature and in the stationary phase. Low salinity of the medium crucially and markedly shortened the induction period. The VBNC cells were highly resistant to thermal (42, 47 degrees C), low salinity (0% NaCl), or acid (pH 4.0) inactivation. CONCLUSIONS: Optimal conditions for inducing VBNC V. parahaemolyticus were reported. The increase in resistance of VBNC V. parahaemolyticus to thermal, low salinity and acidic inactivation verified that this state is entered as part of a survival strategy in an adverse environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The methods for inducing VBNC V. parahaemolyticus in a markedly short time will facilitate further physiological and pathological study. The enhanced stress resistance of the VBNC cells should attract attention to the increased risk presented by this pathogen in food.  相似文献   

16.
In this study we investigated the viable but non-culturable (VBNC) state of Aeromonas hydrophila and its virulence in goldfish. Aeromonas hydrophila cultured in a 0.35% NaCl solution at pH 7.5 and at 25 °C for 50 days showed the VBNC state. In the VBNC state we were unable to detect viable bacteria by the plate count method but we did find 104 cells/ml by the direct viable count microscopical method after staining with fluorescein diacetate and ethidium bromide. The virulence comparison in goldfish showed that bacteria cultured at 25 °C for 1 day in a 0.35% NaCl solution were more virulent than bacteria cultured for 28 days. VBNC bacteria showed lower virulence in goldfish compared to 28-day-cultured bacteria by intraperitoneal injection.The results from the study suggest that A. hydrophila can remain in the aquatic environment for prolonged periods in the VBNC state but those cells are not pathogenic to goldfish.  相似文献   

17.
Stationary-phase-grown cells of the estuarine bacterium Vibrio vulnificus became nonculturable in nutrient-limited artificial seawater microcosms after 27 days at 5 degrees C. When the nonculturable cells were subjected to temperature upshift by being placed at room temperature, the original bacterial numbers were detectable by plate counts after 3 days, with a corresponding increase in the direct viable counts from 3% to over 80% of the total cell count. No increase in the total cell count was observed during resuscitation, indicating that the plate count increases were not due to growth of a few culturable cells. Chloramphenicol and ampicillin totally inhibited resuscitation of the nonculturable cells when added to samples that had been at room temperature for up to 24 h. After 72 h of resuscitation, the inhibitors had an easily detectable but reduced effect on the resuscitated cells, indicating that protein and peptidoglycan synthesis were still ongoing. Major changes in the morphology of the cells were discovered. Nonculturable cells of V. vulnificus were small cocci (approximately 1.0 micron in diameter). Upon resuscitation, the cells became large rods with a size of mid-log-phase cells (3.0 microns in length). Four days after the cells had become fully resuscitated, the cell size had decreased to approximately 1.5 micron in length and 0.7 micron in width. The cells were able to go through at least two cycles of nonculturability and subsequent resuscitation without changes in the total cell count. This is the first report of resuscitation, without the addition of nutrient, of nonculturable cells, and it is suggested that temperature may be the determining factor in the resuscitation from this survival, or adaptation, state of certain species in estuarine environments.  相似文献   

18.
A pathogenic strain of Shigella dysenteriae type 1 was selected for study to elucidate the physiology and potential pathogenicity of organisms in the viable but nonculturable (VBNC) state in the environment. Studies in our laboratory have shown that S. dysenteriae type 1 survives in laboratory microcosms in the VBNC state for long periods of time, i.e., more than 6 months. VBNC cells of S. dysenteriae type 1 were found to retain cytopathogenicity for cultured HeLa cells. To determine whether VBNC S. dysenteriae type 1 expressed protein after loss of culturability, 35S-labelled methionine was added to suspensions of VBNC cells. Total cellular proteins were extracted and examined by autoradiography. Results indicate that VBNC S. dysenteriae type 1 is capable of both active uptake of methionine and incorporation of methionine into protein. Amino acid uptake and protein synthesis substantiate the viability of cells of S. dysenteriae type 1 in the VBNC state, i.e., although the cells are unable to be cultured on laboratory media by standard bacteriological methods, the cells remain metabolically active. Furthermore, VBNC cells of S. dysenteriae type 1 may pose a potential public health hazard that has not yet been recognized.  相似文献   

19.
The viability of bacteria in milk after heat treatments was assessed by using three different viability indicators: (i) CFU on plate count agar, (ii) de novo expression of a gfp reporter gene, and (iii) membrane integrity based on propidium iodide exclusion. In commercially available pasteurized milk, direct viable counts, based on dye exclusion, were significantly (P < 0.05) higher than viable cell counts determined from CFU, suggesting that a significant subpopulation of cells in pasteurized milk are viable but nonculturable. Heating milk at 63.5 degrees C for 30 min resulted in a >4-log-unit reduction in the number of CFU of Escherichia coli and Pseudomonas putida that were marked with lac-inducible gfp. However, the reduction in the number of gfp-expressing cells of both organisms under the same conditions was <2.5 log units. These results demonstrate that a substantial portion of cells rendered incapable of forming colonies by heat treatment are metabolically active and are able to transcribe and translate genes de novo.  相似文献   

20.
Escherichia coli O157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate of E. coli O157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction of E. coli O157:H7 Tn7gfp transformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), both E. coli O157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (10(9) and 10(6) E. coli O157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log(10) cells but did not detect culturable cells. These findings indicate that E. coli O157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号