首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72+/-1% Vo(2 peak) followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-(2)H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCL (L-Arg, 30 g at 0.5 g/min) was confused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1+/-1.8 ml.min(-1).kg(-1); CON: 11.9+/- 0.7 ml.min(-1).kg(-1) at 120 min, P<0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.  相似文献   

4.
5.
6.
It was reported previously that glucose ingestion prior to or at the beginning of muscular exercise was a readily available metabolic substrate. The aim of this study was to see what percentage of carbohydrate utilization can be covered by glucose ingested regularly during exercise. Male healthy volunteers exercised for 285 min at approximately 45% of their individual maximal O2 uptake on a 10% uphill treadmill. After 15 min adaptation to exercise they received either 200 g (group G 200) or 400 g (group G 400) glucose (0.25 g X ml H2O-1) orally in eight equal doses repeated every 30 min (G 200 = 8 X 25 g, n = 4; G 400 = 8 X 50 g, n = 4). Indirect calorimetry was used to evaluate carbohydrate and lipid oxidation. Naturally labeled [13C]glucose was used to follow the oxidation of the exogenous glucose. Total carbohydrate oxidation was 341 +/- 22 and 332 +/- 32 g, lipid oxidation was 119 +/- 8 and 105 +/- 5 g, and exogenous glucose oxidation was 137 +/- 4 and 227 +/- 13 g (P less than 0.005) in groups G 200 and G 400, respectively. Endogenous glucose oxidation was about half in G 400 of what it was in G 200: 106 +/- 27 vs. 204 +/- 24 g (P less than 0.02). During the last hour of exercise, exogenous oxidation represented 55.3 and 87.5% of total carbohydrate oxidation for groups G 200 and G 400, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Extrahepatic glucose release was evaluated during the anhepatic phase of liver transplantation in 14 recipients for localized hepatocarcinoma with mild or absent cirrhosis, who received a bolus of [6,6-2H2]glucose and l-[3-13C]alanine or l-[1,2-13C2]glutamine to measure glucose kinetics and to prove whether gluconeogenesis occurred from alanine and glutamine. Twelve were studied again 7 mo thereafter along with seven healthy subjects. At the beginning of the anhepatic phase, plasma glucose was increased and then declined by 15%/h. The right kidney released glucose, with an arteriovenous gradient of -3.7 mg/dl. Arterial and portal glucose concentrations were similar. The glucose clearance was 25% reduced, but glucose uptake was similar to that of the control groups. Glucose production was 9.5 +/- 0.9 micromol.kg-1. min-1, 30% less than in controls. Glucose became enriched with 13C from alanine and especially glutamine, proving the extrahepatic gluconeogenesis. The gluconeogenic precursors alanine, glutamine, lactate, pyruvate, and glycerol, insulin, and the counterregulatory hormones epinephrine, cortisol, growth hormone, and glucagon were increased severalfold. Extrahepatic organs synthesize glucose at a rate similar to that of postabsorptive healthy subjects when hepatic production is absent, and gluconeogenic precursors and counterregulatory hormones are markedly increased. The kidney is the main, but possibly not the unique, source of extrahepatic glucose production.  相似文献   

9.
To study the effect of increasing amounts of exercising muscle mass on the relationship between glucose mobilization and peripheral glucose uptake, seven young men (23-28 yr) bicycled for 70 min at a work load of 55-60% VO2max. From minute 30 to 50, arm cranking was added and total work load increased to 82 +/- 4% VO2max. During leg exercise, hepatic glucose production (Ra) increased in parallel with peripheral glucose uptake (Rd) and euglycemia was maintained. During arm + leg exercise, Ra increased more than Rd and accordingly plasma glucose increased from 5.11 +/- 0.22 to 8.00 +/- 0.66 mmol/l (P less than 0.05). Plasma catecholamines increased three- to four-fold more during arm + leg exercise than during leg exercise. Leg glucose uptake increased with time regardless of arm cranking. Net leg lactate release during leg exercise was reverted to a net leg lactate uptake during arm + leg exercise. The rate of glycogen breakdown in exercising leg muscle was not altered by addition of arm cranking. In conclusion, when large amounts of muscle mass are active, plasma catecholamines increase sharply and mobilization of glucose exceeds peripheral glucose uptake. This indicates that mechanisms other than feedback regulation to maintain euglycemia are involved in hormonal and substrate mobilization during intense exercise in humans.  相似文献   

10.
Nine endurance-trained men exercised on a cycle ergometer at approximately 68% peak O2 uptake to the point of volitional fatigue [232 +/- 14 (SE) min] while ingesting an 8% carbohydrate solution to determine how high glucose disposal could increase under physiological conditions. Plasma glucose kinetics were measured using a primed, continuous infusion of [6,6-2H]glucose and the appearance of ingested glucose, assessed from [3-3H]glucose that had been added to the carbohydrate drink. Plasma glucose was increased (P < 0.05) after 30 min of exercise but thereafter remained at the preexercise level. Glucose appearance rate (R(a)) increased throughout exercise, reaching its peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue, whereas gut R(a) increased continuously during exercise, peaking at 105 +/- 10 micromol. kg(-1). min(-1) at the point of fatigue. In contrast, liver glucose output never rose above resting levels at any time during exercise. Glucose disposal (R(d)) increased throughout exercise, reaching a peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue. If we assume 95% oxidation of glucose R(d), estimated exogenous glucose oxidation at fatigue was 1.36 +/- 0.08 g/min. The results of this study demonstrate that glucose uptake increases continuously during prolonged, strenuous exercise when carbohydrate is ingested and does not appear to limit exercise performance.  相似文献   

11.
A variable-volume one-compartment model of glucose kinetics and step increases in the rate of tracer infusion were examined for estimation of endogenous glucose production (Ra) during moderate exercise in dogs. A primed infusion of D-[3-3H]glucose was left constant or increased 1.5-, 2-, 3-, 4-, or 5-fold at the onset of a 60-min period of exercise. Application of a regression method, in which Ra and the effective distribution volume were estimated over time, revealed dynamic changes in Ra that were not evident during the constant tracer infusion with a fixed-volume model. Application of the fixed-volume model to studies performed with a two- or three-fold step increase in tracer resulted in the lowest sum-of-squares difference from the regression method. Our results demonstrate that application of a variable-volume model can be achieved during exercise by enrichment of the plasma specific activity through step increases in the rate of tracer infusion and application of a regression method. Alternately, estimates of Ra with a fixed-volume model can be improved by enrichment of the plasma specific activity through a single step increase in the rate of tracer infusion. Our results suggest that when endogenous Ra is changing rapidly, such as at the onset of exercise, these methods will provide a more accurate estimate of Ra than the standard fixed-volume model and constant tracer infusion.  相似文献   

12.
The aim of this study was to investigate whether the osmolality of a glucose solution, ingested at the beginning of a prolonged exercise bout, affects exogenous glucose disposal. We investigated the hormonal and metabolic response to a 50-g glucose load dissolved in either 200 (protocol A), 400 (protocol B), or 600 (protocol C) ml of water and given orally 15 min after adaptation to exercise in five healthy male volunteers. Naturally labeled [13C]glucose was used to follow the conversion of the ingested glucose to expired-air CO2. Total carbohydrate oxidation (indirect calorimetry) was similar in the three protocols (A, 237 +/- 20; B, 258 +/- 17; C, 276 +/- 20 g/4 h), as was lipid oxidation (A, 128 +/- 4; B, 132 +/- 15; C, 124 +/- 12 g/4 h). Exogenous glucose oxidation rates were similar under the three experimental conditions, and the total amount of exogenous glucose utilized was slightly, but not significantly, increased with the more diluted solution (A, 42.6 +/- 4.4; B, 43.4 +/- 4.1; C, 48.7 +/- 7.2 g/4 h). The blood glucose response was similar in the three protocols. Thus, within the range investigated, the osmolality of the glucose solution ingested had no significant influence either on its oxidation (which was 86-98% of the load ingested) or on the utilization of endogenous carbohydrate, lipid, or protein stores.  相似文献   

13.
14.
Related to hepatic autoregulation we evaluated hypotheses that 1) glucose production would be altered as a result of a glycerol load, 2) decreased glucose recycling rate (Rr) would result from increased glycerol uptake, and 3) the absolute rate of gluconeogenesis (GNG) from glycerol would be positively correlated to glycerol rate of disappearance (R(d)) during a glycerol load. For these purposes, glucose and glycerol kinetics were determined in eight men during rest and during 90 min of leg cycle ergometry at 45 and 65% of peak O2 consumption (.VO2 (peak)). Trials were conducted after an overnight fast, with exercise commencing 12 h after the last meal. Subjects received a continuous infusion of [6,6-(2)H(2)]glucose, [1-(13)C]glucose, and [1,1,2,3,3-(2)H(5)]glycerol without (CON) or with an additional 1,000 mg (rest: 20 mg/min; exercise: 40 mg/min) of [2-(13)C]- or unlabeled glycerol added to the infusate (GLY). Infusion of glycerol dampened glucose Rr, calculated as the difference between [6,6-(2)H(2)]- and [1-(13)C]glucose rates of appearance (R(a)), at rest [0.35 +/- 0.12 (CON) vs. 0.12 +/- 0.10 mg. kg(-1). min(-1) (GLY), P < 0.05] and during exercise at both intensities [45%: 0.63 +/- 0.14 (CON) vs. 0.04 +/- 0.12 (GLY); 65%: 0.73 +/- 0.14 (CON) vs. 0.04 +/- 0.17 mg. kg(-1). min(-1) (GLY), P < 0.05]. Glucose R(a) and oxidation were not affected by glycerol infusion at rest or during exercise. Throughout rest and both exercise intensities, glycerol R(d) was greater in GLY vs. CON conditions (rest: 0.30 +/- 0.04 vs. 0.58 +/- 0.04; 45%: 0.57 +/- 0.07 vs. 1.19 +/- 0.04; 65%: 0.73 +/- 0.06 vs. 1.27 +/- 0.05 mg. kg(-1). min(-1), CON vs. GLY, respectively). Differences in glycerol R(d) (DeltaR(d)) between protocols equaled the unlabeled glycerol infusion rate and correlated with plasma glycerol concentration (r = 0.97). We conclude that infusion of a glycerol load during rest and exercise at 45 and 65% of .VO2(peak) 1) does not affect glucose R(a) or R(d), 2) blocks glucose Rr, 3) increases whole body glycerol R(d) in a dose-dependent manner, and 4) results in gluconeogenic rates from glycerol equivalent to CON glucose recycling rates.  相似文献   

15.
To determine if enteral delivery of glucose influences splanchnic glucose metabolism, 10 subjects were studied when glucose was either infused into the duodenum at a rate of 22 micromol x kg(-1) x min(-1) and supplemental glucose given intravenously or when all glucose was infused intravenously while saline was infused intraduodenally. Hormone secretion was inhibited with somatostatin, and glucose (approximately 8.5 mmol/l) and insulin (approximately 450 pmol/l) were maintained at constant but elevated levels. Intravenously infused [6,6-(2)H(2)]glucose was used to trace the systemic appearance of intraduodenally infused [3-(3)H]glucose, whereas UDP-glucose flux (an index of hepatic glycogen synthesis) was measured using the acetaminophen glucuronide method. Despite differences in the route of glucose delivery, glucose production (3.5 +/- 1.0 vs. 3.3 +/- 1.0 micromol x kg(-1) x min(-1)) and glucose disappearance (78.9 +/- 5.7 vs. 85.0 +/- 7.2 micromol x kg(-1) x min(-1)) were comparable on intraduodenal and intravenous study days. Initial splanchnic glucose extraction (17.5 +/- 4.4 vs. 14.5 +/- 2.9%) and hepatic UDP-glucose flux (9.0 +/- 2.0 vs. 10.3 +/- 1.5 micromol x kg(-1) x min(-1)) also did not differ on the intraduodenal and intravenous study days. These data argue against the existence of an "enteric" factor that directly (i.e., independently of circulating hormone concentrations) enhances splanchnic glucose uptake or hepatic glycogen synthesis in nondiabetic humans.  相似文献   

16.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   

17.
18.
This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 +/- 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 +/- 25; EPI, 122 +/- 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (R(d)) (40 min: CON, 33.8 +/- 3; EPI, 20.9 +/- 4.9 micromol. kg(-1). min(-1), P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose R(d) during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.  相似文献   

19.
The present study investigated the responses of leg glucose and protein metabolism during an acute bout of resistance exercise. Seven subjects (5 men, 2 women) were studied at rest and during a strenuous lower body resistance exercise regimen consisting of approximately 8 sets of 10 repetitions of leg press at approximately 75% 1 repetition maximum and 8 sets of 8 repetitions of knee extensions at approximately 80% 1 repetition maximum. L-[ring-2H5]phenylalanine was infused throughout the study for measurement of phenylalanine rates of appearance, disappearance, protein synthesis, and protein breakdown across the leg. Femoral arterial and venous blood samples were collected at rest and during exercise for determination of leg blood flow, concentrations of glucose, lactate, alanine, glutamine, glutamate, leucine, and phenylalanine, and phenylalanine enrichments. Muscle biopsies were obtained at rest and immediately after exercise. Leg blood flow was nearly three times (P <0.009) higher and glucose uptake more than five times higher (P=0.009) during exercise than at rest. Leg lactate release was 86 times higher than rest during the exercise bout. Although whole body phenylalanine rate of appearance, an indicator of whole body protein breakdown, was reduced during exercise; leg phenylalanine rate of appearance, rate of disappearance, protein synthesis, and protein breakdown did not change. Arterial and venous alanine concentrations and glutamate uptake were significantly higher during exercise than at rest. We conclude that lower body resistance exercise potently stimulates leg glucose uptake and lactate release. In addition, muscle protein synthesis is not elevated during a bout of resistance exercise.  相似文献   

20.
The glucoregulatory response to intense exercise [IE, >80% maximum O(2) uptake (VO(2 max))] comprises a marked increment in glucose production (R(a)) and a lesser increment in glucose uptake (R(d)), resulting in hyperglycemia. The R(a) correlates with plasma catecholamines but not with the glucagon-to-insulin (IRG/IRI) ratio. If epinephrine (Epi) infusion during moderate exercise were able to markedly stimulate R(a), this would support an important role for the catecholamines' response in IE. Seven fit male subjects (26 +/- 2 yr, body mass index 23 +/- 0.5 kg/m(2), VO(2 max) 65 +/- 5 ml x kg(-1) x min(-1)) underwent 40 min of postabsorptive cycle ergometer exercise (145 +/- 14 W) once without [control (CON)] and once with Epi infusion [EPI (0.1 microg x kg(-1) x min(-1))] from 30 to 40 min. Epi levels reached 9.4 +/- 0.8 nM (20x rest, 10x CON). R(a) increased approximately 70% to 3.75 +/- 0.53 in CON but to 8.57 +/- 0.58 mg x kg(-1) x min(-1) in EPI (P < 0.001). Increments in R(a) and Epi correlated (r(2) = 0.923, P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号