首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Release of substance P (SP) and neurokinin A (NKA), was demonstrated in the isolated perfused guinea-pig lung. Significant release was obtained by perfusion with capsaicin, high potassium, histamine, bradykinin dimethylphenylpiperazinium, and by electrical vagal nerve stimulation. Capsaicin-induced peptide release was not blocked by 1 microM clonidine. SP and NKA contracted respiratory smooth muscle, NKA being 42 times more potent. Both tachykinins were equipotent in relaxing pulmonary artery. It is concluded that multiple tachykinin can be released from capsaicin-sensitive sensory nerves in the respiratory tract, exerting multiple effects on the target tissues.  相似文献   

2.
Two peptides from the tachykinin family, substance P (SP) and neurokinin A (NKA), were identified as neurotransmitters (co-transmitters) of non-adrenergic non-cholinergic (NANCh) excitation in the gastrointestinal tract. The contraction of smooth muscles produced by tachykinins released from the excitatory enteric motoneurons is mediated by the NK1 and/or the NK2 tachykinin receptors. The differing contribution of these receptors in mediating the NANCh excitatory responses has been demonstrated in various regions of the intestine. The NK3 tachykinin receptors are confined only to the enteric neurons; they mediate release of different excitatory and inhibitory transmitters. The main secondary messenger pathway for all three tachykinin receptors is phosphoinositide breakdown that results in an increase of intracellular Ca2+ concentration. Signal transduction mechanisms are still not adequately known for tahykinin receptors. A multiple ionic mechanism has been proposed to mediate excitatory action of SP; it comprises activation of non-selective cationic channels, or activation of maxi Cl channels, and/or inhibition of K+ channels. Data about the ionic mechanism underlying the NK2 receptor activation are still missing. In conclusion, SP and NKA play a physiological role as NANCh neurotransmitters in smooth muscles of the gastrointestinal tract and, therefore, tachykinins may have a significant pathophysiological relevance in humans.Neirofiziologiya/Neurophysiology, Vol. 27, No. 5/6, pp. 425–432, September–December, 1995.  相似文献   

3.
The present study was designed to investigate Substance P (SP) and a related tachykinin, Neurokinin A (NKA), contributions to the excitatory neurotransmission to the circular smooth muscle of the hamster ileum. In the presence of atropine (0.5 microM), guanethidine (3 microM) and NG-nitro-L-arginine methyl ester (L-NAME) (200 microM), electrical field stimulation (EFS) evoked a non-adrenergic, non-cholinergic (NANC) excitatory junction potential (EJP) and contraction of circular smooth muscle. Applications of SP and NKA produced depolarizing and contractile responses in a concentration-dependent fashion. The EJP and contraction were almost abolished by the non-specific tachykininergic antagonist, spantide (3 microM). Application of SP antagonist, L-732,138, (1 microM) markedly inhibited EJP (82.5%) and contraction (68.9%) and completely blocked excitatory responses produced by exogenous application of SP. While application of NKA antagonist, SR48968 (1 microM) completely blocked the depolarising and contractile responses to NKA, it only slightly inhibited those to EFS (17.2% and 31.4% respectively).These results provide evidence that, in the circular muscle of hamster ileum, endogenous tachykinins are the main NANC excitatory neurotransmitters and their action is mediated by both NK1 and NK2 receptors.  相似文献   

4.
The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK1 receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RT-PCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin NK1 receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK2 receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK3 receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.  相似文献   

5.
OBJECTIVES: Tachykinins are important mediators in neuromuscular signalling but have not been thoroughly characterised in the mouse gut. We investigated the participation of tachykinin receptors in contractility of circular muscle strips of the mouse ileum. RESULTS: Electrical field stimulation (EFS) of excitatory nonadrenergic noncholinergic (NANC) nerves induced frequency-dependent contractions which were mimicked by substance P (SP). Desensitisation of SP and NK(1), NK(2) or NK(3) receptors significantly reduced contractions to EFS. The NK(1) receptor blocker RP67580 significantly inhibited NANC contractions to EFS. The NK(2) and NK(3) receptor blockers nepadutant and SR142801 did not affect NANC contractions per se but increased the RP67580-induced inhibition of NANC contractions to EFS. Contractions to SP were significantly reduced by RP67580 but not affected by nepadutant or SR142801. The NK(1) and NK(2) receptor agonists, septide and [beta-ala(8)]-NKA 4-10 (beta-A-NKA), respectively, but not the NK(3) receptor agonist senktide-induced dose-dependent contractions. Atropine inhibited and l-NNA augmented contractions to septide. Contractions to beta-A-NKA were insensitive to atropine but augmented by l-NNA. CONCLUSIONS: Tachykinins mediate NANC contractions to EFS in the mouse small intestine. Endogenously released tachykinins activate mainly NK(1) receptors, located on cholinergic nerves and smooth muscle cells and, to a lesser degree, NK(2) and NK(3) receptors, most likely located presynaptically.  相似文献   

6.
The purpose of this study was to determine if endogenous tachykinins can cause bradycardia in the isolated perfused guinea pig heart through stimulation of cholinergic neurons. Capsaicin was used to stimulate release of tachykinins and calcitonin gene-related peptide (CGRP) from cardiac afferents. A bolus injection of 100 nmol capsaicin increased heart rate by 26 +/- 7% from a baseline of 257 +/- 14 beats/min (n = 6, P < 0.01). This positive chronotropic response was converted to a minor bradycardic effect in hearts with 1 microM CGRP-(8-37) present to block CGRP receptors. The negative chronotropic response to capsaicin was markedly potentiated in another group of hearts with the further addition of 0.5 microM neostigmine to inhibit cholinesterases. In this group, capsaicin decreased heart rate by 30 +/- 10% from a baseline of 214 +/- 6 beats/min (n = 8, P < 0.05). This large bradycardic response to capsaicin was inhibited by 1) infusion of neurokinin A to desensitize tachykinin receptors or 2) treatment with 1 microM atropine to block muscarinic receptors. The latter observations implicate tachykinins and acetylcholine, respectively, as mediators of the bradycardia. These findings support the hypothesis that endogenous tachykinins could mediate axon reflexes to stimulate cholinergic neurons of the intrinsic cardiac ganglia.  相似文献   

7.
S E Gentry 《Life sciences》1991,48(17):1609-1618
Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with 3H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absence and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). All the tachykinins tested stimulated HMWG release to an approximately equal degree. Stimulation was concentration-related, with log concentrations giving half-maximal effects (EC50) as follows: SP -9.47, NKA -7.37, NKB -5.98, PHY -8.08, and ELE -7.68. This rank order of potency (SP greater than PHY greater than or equal to ELE greater than or equal to NKA greater than NKB) is most consistent with NK1 receptors. To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers. The potency of SP was not diminished by pretreatment with atropine, propranolol, or chlorpheniramine, and atropine actually increased the magnitude of the secretory response. The SP receptor antagonist [D-Arg1,D-Phe5, D-Trp7,9, Leu11]-SP blocked SP-induced secretion. These findings indicate that SP is a potent stimulus of airway macromolecular secretion. This effect occurs through the action of NK1 receptors, and is not dependent upon cholinergic, beta-adrenergic, or H-1 histamine receptors. The facilitation by atropine of SP stimulation suggests the existence of a mechanism of cholinergic inhibition of SP-induced stimulation.  相似文献   

8.
A 25 year adventure in the field of tachykinins   总被引:3,自引:0,他引:3  
  相似文献   

9.
Two peptides with limited structural similarity to mammalian substance P (SP) and neurokinin A (NKA) have been isolated from extracts of the intestine of the African clawed frog (Xenopus laevis). The primary structure of an SP-like peptide was established as: Lys-Pro-Arg-Pro-Asp-Gln-Phe-Tyr-Gly-Leu-Met.NH(2), which is identical to the previously characterized peptide, bufokinin isolated from the toad Bufo marinus. The primary structure of an NKA-related peptide was established as Thr-Leu-Thr-Thr-Gly-Lys-Asp-Phe-Val-Gly-Leu-Met.NH(2). Only the five amino acids at the C-terminal region of the peptide are identical to mammalian NKA whereas the N-terminal region shows no structural similarity to previously characterized tachykinins. Immunohistochemical investigations of the gut wall revealed a dense network of nerve fibres and nerve cell bodies containing SP/NKA-like substances. The myotropic effects of the Xenopus tachykinins were compared with the contractile effect of mammalian SP and NKA on isolated strips of circular smooth muscle from Xenopus stomach. No significant differences in potencies (-log EC(50)) or in intrinsic activities were observed between the Xenopus and mammalian peptides. The potencies for the Xenopus SP-like (8.49+/-0.15) and the NKA-like peptide (8.12+/-0.06) were similar suggesting that the amino acid sequence at the N-terminal region of the tachykinins is not important in activating the tachykinin receptors in Xenopus gastric smooth muscle. The maximum response to Xenopus SP (alpha=0.59+/-0.06) was significantly lower than to the NKA-like peptide (alpha=1.0) suggesting a more effective interaction of the NKA-like peptide with the tachykinin receptor(s) in Xenopus stomach.  相似文献   

10.
11.
The tachykinins substance P (SP) and neurokinin A (NKA) are synthesized and released from nerves in the peripheral and enteric nervous system (PNS and ENS). They act as nonadrenergic noncholinergic (NANC) excitatory transmitters in mammalian airways, and the genitourinary and gastrointestinal tract. At the postjunctional level, both NK(1) (SP-preferring) and NK(2) (NKA-preferring) receptors are often co-expressed by target cells innervated by TKergic nerves. Thus an issue of duplication seems to exists with regard to peripheral tachykininergic co-transmission, the duplication involving both messengers (the peptides) and effectors (the receptors). By using receptor selective antagonists it has been possible to dissect the relative contribution of different receptors to TKergic co-transmission: the available results indicate that multiple arrangements exist involving both summation, cooperation and specialization of different messengers/effectors in producing the overall response.  相似文献   

12.
Gastroesophageal acid reflux (GER) is a common disorder associated with the exacerbation of asthma. In this study we investigated the effects on the airways of intraoesophageal HCl instillation in the rabbit and the role of tachykinins in these effects. In anaesthetized New Zealand rabbits bronchopulmonary functions [total lung resistance (R(L)) and dynamic compliance (C(dyn))] were calculated before and after HCl intraoesophageal instillation. Infusion of HCl induced a significant bronchoconstriction (P < 0.05) in the terms of R(L) and C(dyn) changes, that were increased by phosphoramidon pre-treatment and reduced by capsaicin pre-treatment. Moreover, a pre-treatment with SR 48968, a tachykinin NK2 receptor antagonist, or SR 140333, a NK1 receptor antagonist, significantly inhibited the bronchoconstriction induced by intraoesophageal HCl infusion in terms of R(L) and C(dyn)changes. Finally, the HCl induced bronchoconstriction was unaffected by SR 142801, a tachykinin NK3 receptor antagonist.In conclusion these results suggest that bronchoconstriction induced by intraoesophageal HCl infusion is mainly dependent on the release of tachykinins and that both NK1 and NK2 tachykinin receptors are involved.  相似文献   

13.
We investigated the role of tachykinins in airway neurogenic responses occurring in the early phase of endotoxemia. Forty-eight anesthetized guinea pigs were evenly divided into six groups pretreated with either saline vehicle, CP-96,345 (a tachykinin NK(1) receptor antagonist), SR-48,968 (a tachykinin NK(2) receptor antagonist) or CP-96,345 and SR-48,968 in combination. Animals then received an intravenous injection of either saline (the vehicle for endotoxin) or endotoxin (30 mg/kg). Total lung resistance (R(L)) and dynamic lung compliance (C(dyn)) were continuously measured before and 30 min after administration of saline or endotoxin. Airway microvascular leakage was assessed at the end of the observation period. Endotoxin significantly increased R(L) and decreased C(dyn) 10 min after intravenous endotoxin injection. Plasma extravasation significantly increased in the trachea, main bronchi and intrapulmonary airways with endotoxin administration. These changes in lung mechanics were abolished by SR-48,968, but were unaffected by CP-96,345. The plasma extravasation was largely attenuated by CP-96,345 and/or SR-48,968. We conclude that (1) endogenous tachykinins play an important role in producing changes in lung mechanics and airway microvascular leakage during the early phase of endotoxemia and (2) activation of tachykinin NK(2) receptors is responsible for the former response, while activation of both tachykinin NK(1) and NK(2) receptors is involved in the latter response.  相似文献   

14.
Monocrotaline (MCT) produces respiratory dysfunction, pulmonary hypertension (PH), and right ventricular hypertrophy (RVH) in rats. Tachykinins, such as substance P (SP) and neurokinin A (NKA), may mediate these effects. The purpose of this study was to investigate the length of tachykinin depletion (via capsaicin treatment) is needed to prevent (or attenuate) PH and/or RVH. Six groups of rats were injected subcutaneously with saline (3 ml/kg); capsaicin followed by saline or MCT (60 mg/kg); or MCT followed 7, 11, or 14 days later by capsaicin. Capsaicin (cumulative dose, 500 mg/kg) was given over a period of 4-5 days. Respiratory function, pulmonary vascular parameters, lung tachykinin levels, and tracheal neutral endopeptidase (NEP) activity were measured 21 days after MCT or saline injection. Capsaicin significantly decreased lung levels of SP but not NKA. Both capsaicin pretreatment and posttreatment blocked the following MCT-induced alterations: increases in lung SP and airway constriction; decreases in tracheal NEP activity and dynamic respiratory compliance. Administration of capsaicin before or 7 days after MCT blocked MCT-induced PH and RVH. The above data suggest that the early tachykinin-mediated airway dysfunction requires only transient elevated tachykinins, while progression of late tachykinin-mediated effects (PH and RVH) requires elevated tachykinins for more than one week.  相似文献   

15.
Actions of thromboxane (TXA(2)) to alter airway resistance were first identified over 25 years ago. However, the mechanism underlying this physiological response has remained largely undefined. Here we address this question using a novel panel of mice in which expression of the thromboxane receptor (TP) has been genetically manipulated. We show that the response of the airways to TXA(2) is complex: it depends on expression of other G protein-coupled receptors but also on the physiological context of the signal. In the healthy airway, TXA(2)-mediated airway constriction depends on expression of TP receptors by smooth muscle cells. In contrast, in the inflamed lung, the direct actions of TXA(2) on smooth muscle cell TP receptors no longer contribute to bronchoconstriction. Instead, in allergic lung disease, TXA(2)-mediated airway constriction depends on neuronal TP receptors. Furthermore, this mechanistic switch persists long after resolution of pulmonary inflammation. Our findings demonstrate the powerful ability of lung inflammation to modify pathways leading to airway constriction, resulting in persistent changes in mechanisms of airway reactivity to key bronchoconstrictors. Such alterations are likely to shape the pathogenesis of asthmatic lung disease.  相似文献   

16.
This study was carried out to determine whether tachykinins released from lung C-fiber afferents play a part in the bronchial hyperreactivity induced in guinea pigs by chronic exposure to cigarette smoke (CS). Two matching groups of young guinea pigs were exposed to either mainstream CS (CS group) or air (control group) for 20 min twice daily for 14-17 days. There was no difference in the baseline total pulmonary resistance (RL) between the two groups, but the baseline dynamic lung compliance was reduced ( approximately 19%) in CS animals. The responses of RL to intravenous injections of ACh, neurokinin (NK) A, and capsaicin were all markedly increased in CS animals; for example, ACh at the same dose of 5.06 microg/kg increased RL by 207% in the control group and by 697% (n = 8; P < 0. 001) in the CS group. The increased responsiveness was accompanied by significant increases in the numbers of neutrophils, eosinophils, and macrophages in the bronchoalveolar lavage fluid in CS animals. Pretreatment with SR-48968 and CP-99994, antagonists of NK(1) and NK(2) receptors, respectively, did not alter the response of RL to ACh in control animals, but it abolished the elevated bronchoconstrictive response in the CS animals. Furthermore, the immunoreactivities of substance P and calcitonin gene-related peptide in the bronchoalveolar lavage fluid collected after capsaicin challenge were significantly increased in CS animals. These results show that chronic exposure to CS induced airway mucosal inflammation accompanied by bronchial hyperreactivity in guinea pigs and that the tachykininergic mechanism plays an important role in this augmented responsiveness.  相似文献   

17.
The chemical messengers released onto second-order dorsal horn neurons from the spinal terminals of contraction-activated group III and IV muscle afferents have not been identified. One candidate is the tachykinin substance P. Related to substance P are two other tachykinins, neurokinin A (NKA) and neurokinin B (NKB), which, like substance P, have been isolated in the dorsal horn of the spinal cord and have receptors there. Whether NKA or NKB plays a transmitter/modulator role in the spinal processing of the exercise pressor reflex is unknown. Therefore, we tested the following hypotheses. After the intrathecal injection of a highly selective NK-1 (substance P) receptor antagonist onto the lumbosacral spinal cord, the reflex pressor and ventilatory responses to static muscular contraction will be attenuated. Likewise, after the intrathecal injection either of an NK-2 (NKA) receptor antagonist or an NK-3 (NKB) receptor antagonist onto the lumbrosacral spinal cord, the reflex pressor and ventilatory responses to static contraction will be attenuated. We found that, 10 min after the intrathecal injection of 100 micrograms of the NK-1 receptor antagonist, the pressor and ventilatory responses to contraction were significantly (P < 0.05) attenuated. Mean arterial pressure was attenuated by 13 +/- 3 mmHg (48%) and minute volume of ventilation by 120 +/- 38 ml/min (34%). The cardiovascular and ventilatory responses to contraction before either 100 micrograms of the NK-2 receptor antagonist or 100 micrograms of the NK-3 receptor antagonist were not different (P > 0.05) from those after the NK-2 or the NK-3 receptor antagonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In the guinea pig isolated perfused lung, we have examined the relationship between the effects of capsaicin and neuropeptide release and the possible existence of an axon reflex arrangement. Bolus injections into the pulmonary artery of capsaicin (1-100 pmol), substance P (10-1,000 pmol), and neurokinin (NK) A (10-100 pmol) produced a concentration-dependent bronchoconstriction, whereas calcitonin gene-related peptide (CGRP, 20-40 nmol) was without effect. Repeated administration of capsaicin at 40- to 60-min intervals was not associated with tachyphylaxis. These data support the presence of a NK2- (or NKA) type of tachykinin receptor in the guinea pig airways. Tetrodotoxin (0.3-3 microM) inhibited the effect of capsaicin, indicating that an axon reflex was operant. Capsaicin increased overflow of CGRP-like immunoreactivity (-LI) and NKA-LI, the latter only during concurrent infusion of the enkephalinase inhibitor phosphoramidon (3 microM). Phosphoramidon also increased overflow of CGRP-LI, suggesting that both NKA and CGRP were catabolized by a similar enzyme. The purine nucleoside adenosine did not cause any detectable overflow of CGRP-LI, indicating that neuropeptides may not be involved in adenosine-evoked bronchoconstriction and that bronchoconstriction per se does not induce neuropeptide overflow. Capsaicin and NKA had only minor effects on buffer flow, whereas substance P produced pulmonary vasoconstriction. These data clearly demonstrate that capsaicin acts via an axon reflex in the guinea pig airways. Supramaximal concentrations of capsaicin are needed to detect neuropeptide overflow, but the possibility exists that released neuropeptides mediate its effects.  相似文献   

19.
The prevalence of asthma has taken on pandemic proportions. Since this disease predisposes patients to severe acute airway constriction, novel mechanisms capable of promoting airway smooth muscle relaxation would be clinically valuable. We have recently demonstrated that activation of endogenous airway smooth muscle GABA(A) receptors potentiates β-adrenoceptor-mediated relaxation, and molecular analysis of airway smooth muscle reveals that the α-subunit component of these GABA(A) receptors is limited to the α(4)- and α(5)-subunits. We questioned whether ligands with selective affinity for these GABA(A) receptors could promote relaxation of airway smooth muscle. RT-PCR analysis of GABA(A) receptor subunits was performed on RNA isolated by laser capture microdissection from human and guinea pig airway smooth muscle. Membrane potential and chloride-mediated current were measured in response to GABA(A) subunit-selective agonists in cultured human airway smooth muscle cells. Functional relaxation of precontracted guinea pig tracheal rings was assessed in the absence and presence of the α(4)-subunit-selective GABA(A) receptor agonists: gaboxadol, taurine, and a novel 8-methoxy imidazobenzodiazepine (CM-D-45). Only messenger RNA encoding the α(4)- and α(5)-GABA(A) receptor subunits was identified in RNA isolated by laser capture dissection from guinea pig and human airway smooth muscle tissues. Activation of airway smooth muscle GABA(A) receptors with agonists selective for these subunits resulted in appropriate membrane potential changes and chloride currents and promoted relaxation of airway smooth muscle. In conclusion, selective subunit targeting of endogenous airway smooth muscle-specific GABA(A) receptors may represent a novel therapeutic option for patients in severe bronchospasm.  相似文献   

20.
Binding experiments performed with [(125)I]-NKA allowed us to demonstrate the presence of "septide-sensitive" specific binding sites on membranes from rat CHO cells transfected with the NK(1) receptor cDNA (CHO-rat-NK1 cells), human astrocytoma U373 MG, or mouse cortical astrocytes, cells which express NK(1) but neither NK(2) nor NK(3) receptors. In all cases, [(125)I]-NKA was specifically bound with high affinity (2 to 5 nM) to a single population of sites. In the three preparations, pharmacological characteristics of [(125)I]-NKA binding sites were notably different from those of classical NK(1) binding sites selectively labelled with [(125)I]-BHSP. Indeed, the endogenous tachykinins NKA, NPK, and NKB and the septide-like compounds such as septide, SP(6-11), ALIE-124, [Apa(9-10)]SP, or [Lys(5)]NKA(4-10) had a much higher affinity for [(125)I]-NKA than [(125)I]-BHSP binding sites. Interestingly, differences were also found in the ratio of B(max) values for [(125)I]-NKA and [(125)I]-BHSP specific bindings from one tissue to another. These latter observations suggest that these two types of NK(1) binding sites are present on distinct NK(1) receptor isoforms (or conformers). Finally, while several tachykinins and tachykinin-related compounds stimulated cAMP formation or increased inositol phosphate accumulation in CHO-rat-NK1 cells, these compounds only increased the accumulation of inositol phosphates in the two other preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号