首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-23 is a heterodimeric cytokine composed of the IL-12p40 "soluble receptor" subunit and a novel cytokine-like subunit related to IL-12p35, termed p19. Human and mouse IL-23 exhibit some activities similar to IL-12, but differ in their capacities to stimulate particular populations of memory T cells. Like IL-12, IL-23 binds to the IL-12R subunit IL-12Rbeta1. However, it does not use IL-12Rbeta2. In this study, we identify a novel member of the hemopoietin receptor family as a subunit of the receptor for IL-23, "IL-23R." IL-23R pairs with IL-12Rbeta1 to confer IL-23 responsiveness on cells expressing both subunits. Human IL-23, but not IL-12, exhibits detectable affinity for human IL-23R. Anti-IL-12Rbeta1 and anti-IL-23R Abs block IL-23 responses of an NK cell line and Ba/F3 cells expressing the two receptor chains. IL-23 activates the same Jak-stat signaling molecules as IL-12: Jak2, Tyk2, and stat1, -3, -4, and -5, but stat4 activation is substantially weaker and different DNA-binding stat complexes form in response to IL-23 compared with IL-12. IL-23R associates constitutively with Jak2 and in a ligand-dependent manner with stat3. The ability of cells to respond to IL-23 or IL-12 correlates with expression of IL-23R or IL-12Rbeta2, respectively. The human IL-23R gene is on human chromosome 1 within 150 kb of IL-12Rbeta2.  相似文献   

2.
Interleukin (IL)-33 is a recently described member of the IL-1 family and has been shown to induce production of T helper type 2 cytokines. In this study, an anti-IL-33 antibody was evaluated against pulmonary inflammation in mice sensitized and challenged with ovalbumin. The anti-IL-33 or a control antibody (150 μg/mouse) was given intraperitoneally as five doses before the sensitization and antigen challenge. Treatment with anti-IL-33 significantly reduced serum IgE secretion, the numbers of eosinophils and lymphocytes, and concentrations of IL-4, IL-5, and IL-13 in bronchoalveolar lavage fluid compared with administration of a control antibody. Histological examination of lung tissue demonstrated that anti-IL-33 significantly inhibited allergen-induced lung eosinophilic inflammation and mucus hypersecretion. Our data demonstrate for the first time that anti-IL-33 antibody can prevent the development of asthma in a mouse model and indicate that blockade of IL-33 may be a new therapeutic strategy for allergic asthma.  相似文献   

3.
Interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) regulate CD4+ T cell interferon-gamma (IFN-gamma) secretion in schistosome granulomas. The role of IL-12 was determined using C57BL/6 and CBA mice. C57BL/6 IL-4-/- granuloma cells were stimulated to produce IFN-gamma when cultured with IL-10 or TGF-beta neutralizing monoclonal antibody. In comparison, C57BL/6 wild-type (WT) control granuloma cells produced less IFN-gamma. IL-12, IL-18, and soluble egg antigen stimulated IFN-gamma release from C57BL/6 IL-4-/- and WT mice. IFN-gamma production in C57 IL-4-/- and WT granulomas was IL-12 dependent, because IL-12 blockade partly abrogated IFN-gamma secretion after stimulation. All granuloma cells released IL-12 (p70 and p40), and IL-12 production remained constant after anti-TGF-beta, anti-IL-10, recombinant IL-18, or antigen stimulation. C57 WT and IL-4-/- mouse granuloma cells expressed IL-12 receptor (IL-12R) beta1-subunit mRNA but little beta2 mRNA. TGF-beta or IL-10 blockade did not influence beta1 or beta2 mRNA expression. CBA mouse dispersed granuloma cells released no measurable IFN-gamma, produced IL-12 p70 and little p40, and expressed IL-12R beta2 and little beta1 mRNA. In T helper 2 (Th2) granulomas of C57BL/6 WT and IL-4-/- mice, cells produce IL-12 (for IFN-gamma production) and IL-10 and TGF-beta modulate IFN-gamma secretion via mechanisms independent of IL-12 and IL-12R mRNA regulation. We found substantial differences in control of granuloma IFN-gamma production and IL-12 circuitry in C57BL/6 and CBA mice.  相似文献   

4.
IL-12p40 is a natural antagonist which inhibits IL-12- and IL-23-mediated biological activity by blocking the binding of IL-12/23 to their receptors. Recently, IL-12p40 was also shown to have immune-enhancing activity through the activation of macrophages or dendritic cells. In this study, we investigated the effects of IL-12p40 as a genetic adjuvant on immune modulation using recombinant adenoviruses expressing IL-12p40 (rAd/IL-12p40) and OVA (rAd/OVA). Coimmunization of rAd/IL-12p40 at a low dose (1 x 10(4) PFU) with rAd/OVA resulted in OVA-specific immune enhancement, while a high dose of rAd/IL-12p40 (1 x 10(8) PFU) caused significant suppression of CD8(+) T cell responses. In addition, the enhancement and suppression of OVA-specific CD8(+) T cell responses correlated with antitumor activity against E.G7-OVA tumor challenge, which subsequently affected the survival rate. Moreover, the differential CD8(+) T cell response by IL-12p40 was still observed in IL-12Rbeta2 knockout (IL-12Rbeta2KO), but not in IL-12Rbeta1 knockout (IL-12Rbeta1KO) mice, indicating that IL-12p40 is a cytokine which can modulate Ag-specific T cell responses depending on IL-12Rbeta1. Our findings provide a novel insight on the physiological role of IL-12p40, which can be informative in the design of vaccine strategies and therapeutic regimens.  相似文献   

5.
IL-12 was thought to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. However, we have recently found that IL-12 responsiveness, via IL-12Rbeta2, is not required in the induction of EAE. To determine the role of IL-12Rbeta1, a key subunit for the responsiveness to both IL-12 and IL-23, in the development of autoimmune diseases, we studied EAE in mice deficient in this subunit of IL-12R. IL-12Rbeta1(-/-) mice are completely resistant to myelin oligodendrocyte glycoprotein (MOG)-induced EAE, with an autoantigen-specific Th2 response. To study the mechanism underlying this Th2 bias, we cocultured purified CD4(+) T cells and APCs of MOG-immunized mice. We demonstrate that IL-12Rbeta1(-/-) APCs drive CD4(+) T cells of both wild-type and IL-12Rbeta1(-/-) mice to an Ag-induced Th2 phenotype, whereas wild-type APCs drive these CD4(+) T cells toward a Th1 type. IL-12Rbeta1(-/-) CD4(+) T cells, in turn, appear to exert an immunoregulatory effect on the capacity of wild-type APCs to produce IFN-gamma and TNF-alpha. Furthermore, decreased levels of IL-12p40, p35, and IL-23p19 mRNA expression were found in IL-12Rbeta1(-/-) APCs, indicating an autocrine pathway of IL-12/IL-23 via IL-12Rbeta1. IL-18 production and IL-18Ralpha expression are also significantly decreased in IL-12Rbeta1(-/-) mice immunized with MOG. We conclude that in the absence of IL-12Rbeta1, APCs play a prominent regulatory role in the induction of autoantigen-specific Th2 cells.  相似文献   

6.
7.
The cytokine IL-12 plays a critical role in inducing the production of IFN-gamma from T and NK cells and in the polarization of T cells towards the Th1 phenotype. IL-12 is comprised of two subunits (IL-12p40 and IL-12p35) that together form the biologically active p70 molecule, and IL-12 functions via binding to a heterodimeric receptor (IL-12Rbeta1 and IL-12Rbeta2). Previous studies utilizing mice deficient for either the IL-12 cytokine or the IL-12-induced signaling molecule STAT4 have established a critical role for IL-12 during infection with Leishmania major. However, these studies warrant careful re-interpretation in light of the recent discovery of the IL-12-related cytokine, IL-23, which utilizes the IL-12p40 chain in combination with an IL-12p35-related molecule, called p19, and a receptor comprised of the IL-12Rbeta1 chain plus a unique chain referred to as IL-23R. We analyzed the course of L. major infection in mice deficient for the IL-12-specific IL-12Rbeta2 subunit in order to assess the role of IL-12 signaling without disruption of the IL-23 pathway. After infection with L. major, IL-12Rbeta2KO mice of a resistant background (C57Bl/6) developed large cutaneous lesions similar to those developed by susceptible BALB/c mice. Draining lymph node cells from L. major-infected IL-12Rbeta2KO mice released the Th2 cytokines IL-4 and IL-5 after in vitro stimulation with Leishmania lysate but were completely devoid of IFN-gamma, consistent with a default towards a strong parasite-specific Th2 response. L. major-infected IL-12Rbeta2KO mice were also devoid of parasite-specific IgG2a antibodies, and interestingly, their footpad lesions ulcerated earlier than those of susceptible BALB/c mice.  相似文献   

8.
Interleukin (IL)-10 has been shown to reduce many inflammatory reactions. We investigated the in vivo effects of IL-10 on a bleomycin-induced lung injury model. Hemagglutinating virus of Japan (HVJ)-liposomes containing a human IL-10 expression vector (hIL10-HVJ) or a balanced salt solution as a control (Cont-HVJ) was intraperitoneally injected into mice on day -3. This was followed by intratracheal instillation of bleomycin (0.8 mg/kg) on day 0. Myeloperoxidase activity of bronchoalveolar lavage fluid and tumor necrosis factor-alpha mRNA expression in bronchoalveolar lavage fluid cells on day 7 and hydroxyproline content of the whole lung on day 21 were inhibited significantly by hIL10-HVJ treatment. However, Cont-HVJ treatment could not suppress any of these parameters. We also examined the in vitro effects of IL-10 on the human lung fibroblast cell line WI-38. IL-10 significantly reduced constitutive and transforming growth factor-beta-stimulated type I collagen mRNA expression. However, IL-10 did not affect the proliferation of WI-38 cells induced by platelet-derived growth factor. These data suggested that exogenous IL-10 may be useful in the treatment of pulmonary fibrosis.  相似文献   

9.
We recently reported that anti-IL-15 neutralizing mAb has been shown to inhibit production of MCP-1 in response to IL-2 from normal human gingival fibroblasts (HGF), the major constituent of gingival tissue. In the present study, we examined the expression of IL-2R and IL-15R subunits in HGF from normal and inflamed regions and the role of endogenous IL-15 in IL-2-mediated signaling. Normal HGF expressed IL-2Rbeta and common gamma-chain (gammac) but not IL-2Ralpha or IL-15Ralpha, whereas inflamed HGF expressed IL-2Ralpha, IL-15Ralpha, IL-2Rbeta, and gammac, as assessed by RT-PCR and flow cytometry. Exogenous IL-2 and IL-15 induced production of MCP-1 but not IL-8 in normal HGF, and induced the production of both chemokines in inflamed HGF. Both HGF constitutively transcribed the 48 aa-IL-15 isoform, and the isoform was not actively secreted but rather existed as a membrane-bound form. Pretreatment with anti-IL-15 neutralizing mAb for 24 h completely inhibited the production of MCP-1 induced by IL-2 and IL-15 and IL-2-induced phosphorylation of Jak 1 and 3 in HGF. The pretreatment and RNA interference targeted to IL-15 mRNA resulted in total inhibition of the IL-2Rbeta and gammac expression at mRNA and protein levels. Furthermore, excess amounts of IL-2 restored the inhibitory effect of anti-IL-15, inhibition of NF-kappaB abrogated the expression of IL-2Rbeta and gammac, and IL-2-induced-nuclear translocation of NF-kappaB was completely inhibited by the RNA interference in HGF. These results suggest that endogenous membrane-bound IL-15 sustains recruitment of IL-2Rbeta and gammac through activation of NF-kappaB in HGF.  相似文献   

10.
11.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   

12.
Ligation of CD40 on monocytes through its interaction with CD40 ligand (CD154) present on activated T helper cells, results in activation of monocyte inflammatory cytokine synthesis and rescue of monocytes from apoptosis induced through serum deprivation. Both of these consequences of CD40 stimulation have been shown to be dependent on the induction of protein tyrosine kinase activity. CD40-mediated activation of protein tyrosine kinase activity and subsequent inflammatory cytokine production are abrogated by treatment of monocytes with the T helper type 2 cytokines interleukin 4 (IL-4) and interleukin 10 (IL-10). In the current study we demonstrate that stimulation of monocytes through CD40 resulted in the phosphorylation and activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein kinases, whereas phosphorylation of mitogen-activated protein kinases family members p38 and c-Jun N-terminal kinase was not observed in response to this stimuli over the time course examined. PD98059, an inhibitor of the upstream activator of ERK1/2, the MAP/ERK kinase MEK1/2, suppressed IL-1beta and tumor necrosis factor-alpha production in a dose-dependent fashion. Pretreatment of monocytes with IL-4 and IL-10 inhibited CD40-mediated activation of ERK1/2 kinase activity when used individually, and are enhanced in effectiveness when used in combination. Together, the data demonstrate that CD40-mediated induction of IL-1beta and tumor necrosis factor-alpha synthesis is dependent on a MEK/ERK pathway which is obstructed by signals generated through the action of IL-4 and IL-10.  相似文献   

13.
Lack of sufficient IL-12 production has been suggested to be one of the basic underlying mechanisms in atopy, but a potential role of IL-12 in established allergic airway disease remains unclear. We took advantage of a mouse model of experimental asthma to study the role of IL-12 during the development of bronchial inflammation. Administration of anti-IL-12p35 or anti-IL-12p40 mAb to previously OVA-sensitized BALB/c mice concomitantly with exposure to nebulized OVA, abolished both the development of bronchial hyperresponsiveness to metacholine as well as the eosinophilia in bronchoalveolar lavage fluid and peripheral blood. Anti-IL-12 treatment reduced CD4(+) T cell numbers and IL-4, IL-5, and IL-13 levels in the bronchoalveolar lavage fluid and the mRNA expression of IL-10, eotaxin, RANTES, MCP-1, and VCAM-1 in the lung. Anti-IL-12p35 treatment failed to show these effects in IFN-gamma knockout mice pointing to the essential role of IFN-gamma in IL-12-induced effects. Neutralization of IL-12 during the sensitization process aggravated the subsequent development of allergic airway inflammation. These data together with recent information on the role of dendritic cells in both the sensitization and effector phase of allergic respiratory diseases demonstrate a dual role of IL-12. Whereas IL-12 counteracts Th2 sensitization, it contributes to full-blown allergic airway disease upon airway allergen exposure in the postsensitization phase, with enhanced recruitment of CD4(+) T cells and eosinophils and with up-regulation of Th2 cytokines, chemokines, and VCAM-1. IFN-gamma-producing cells or cells dependent on IFN-gamma activity, play a major role in this unexpected proinflammatory effect of IL-12 in allergic airway disease.  相似文献   

14.
15.
IL-12 and IL-18 are both proinflammatory cytokines that contribute to promoting Th1 development and IFN-gamma expression. However, neither IL-12R nor IL-18R is expressed as a functional complex on most resting T cells. This study investigated the molecular mechanisms underlying the induction of an IL-18R complex in T cells. Resting T cells expressed IL-18Ralpha chains but did not exhibit IL-18 binding sites as detected by incubation with rIL-18 followed by anti-IL-18 Ab, suggesting a lack of IL-18Rbeta expression in resting T cells. Although they also failed to express IL-12R, stimulation with anti-CD3 plus anti-CD28 generated IL-12R. Exposure of these cells to IL-12 led not only to up-regulation of IL-18Ralpha expression but also to induction of IL-18R binding sites on both CD4(+) and CD8(+) T cells concomitant with IL-18Rbeta mRNA expression. The IL-18 binding site represented a functional IL-18R complex capable of exhibiting IL-18 responsiveness. IL-12 induction of an IL-18R complex and IL-18Rbeta mRNA expression was not observed in STAT4-deficient (STAT4(-/-)) T cells and was substantially decreased in IFN-gamma(-/-) T cells. However, the failure of STAT4(-/-) T cells to induce an IL-18R complex was not corrected by IFN-gamma. These results indicate that STAT4 and IFN-gamma play an indispensable role and a role as an amplifying factor, respectively, in IL-12 induction of the functional IL-18R complex.  相似文献   

16.
We previously reported that the ES products from the plerocercoids of Spirometra erinaceieuropaei reduce nitric oxide synthase and chemokine gene expression in macrophages. In this study, we show that ES products suppressed tumor necrosis factor-alpha mRNA expression and tumor necrosis factor-alpha production in murine peritoneal macrophages stimulated with lipopolysaccharide or lipoteichoic acid in vitro. When macrophages from ES product-injected mice were stimulated with lipopolysaccharide in vitro, these cells produced smaller amounts of tumor necrosis factor-alpha compared with those taken from control mice. The suppressive effects of ES products were not restored by the treatment of indomethacin or anti-IL-10 antibody, and the ES products did not induce mRNA expression of secretory leukocyte protease inhibitor. Macrophages from C3H/HeJ mice, which have a single point mutation in the Toll-like receptor 4 gene, expressed tumor necrosis factor-alpha and IL-1alpha mRNA in the presence of lipopolysaccharide, but these expressions were less than those of macrophages from C3H/HeN. ES products significantly suppressed tumor necrosis factor-alpha gene expression and tumor necrosis factor-alpha production in macrophages from C3H/HeN and C3H/HeJ mice stimulated with lipopolysaccharide. However, ES products had no effect on IL-1 mRNA expression. Our data suggest that the plerocercoids secrete the tumor necrosis factor-alpha inhibitory products to evade the host's immune system, and that tumor necrosis factor-alpha mRNA expression might be inhibited downstream from Toll-like receptor 4 in the lipopolysaccharide signaling pathway.  相似文献   

17.
The outcome and severity of some diseases correlate with the dominance of either the T helper 1 (Th1) or Th2 immune response, which is stimulated by IL-12 or IL-4, respectively. In the present study we demonstrate that gamma interferon (IFN-gamma) secretion by murine spleen cells stimulated with KM(+), a mannose-binding lectin from Artocarpus integrifolia, is due to IL-12 induction, because (1) macrophages from several sources (including cell lines) produced IL-12 p40 in response to KM(+), and (2) lectin-free supernatants from J774 cell line cultures stimulated with KM(+) induced the secretion of IFN-gamma by spleen cell cultures, an effect blocked by the supernatant pretreatment with anti-IL-12 antibody. The known pattern of susceptibility of BALB/c mice to infection with Leishmania major, attributed to high levels of IL-4 production leading to a Th2 nonprotective immune response, was modified by administration of KM(+). Draining lymph node cells from these immunized BALB/c mice (in contrast to cells from animals immunized only with soluble leishmanial antigen [SLA]) secreted high levels of IFN-gamma and low levels of IL-4, which characterized a Th1 rather than a Th2 response pattern. The footpad thickness of BALB/c mice immunized with SLA plus KM(+) and challenged with L. major was similar to that of uninfected mice. This beneficial effect against leishmanial infection was blocked by pretreatment of these mice with anti-IL-12 antibody. These observations indicate that KM(+) induces IL-12 p40 in vivo and has a protective effect against L. major infection.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号