首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The present study was undertaken to examine the role of the exercise-induced stress hormone response on the regulation of type 1 and type 2 T lymphocyte intracellular cytokine production. Subjects performed 2.5 h of cycling exercise at 65% maximal O2 uptake while ingesting a 6.4% carbohydrate (CHO) solution, 12.8% CHO solution, or a placebo. Peripheral whole blood samples were stimulated and stained for T lymphocyte surface antigens (CD4 and CD8). Cells were then permeabilized, stained for intracellular cytokines, and analyzed using flow cytometry. Exercise resulted in a decrease (P < 0.05) in the number and percentage of IFN-gamma positive CD4+ and CD8+ T lymphocytes. These stimulated cells produced less IFN-gamma immediately postexercise (P < 0.05) and 2-h postexercise (P < 0.05) compared with preexercise. However, CHO ingestion, which attenuated the exercise-induced stress hormone response compared with placebo (P < 0.05), prevented both the decrease in the number and percentage of IFN-gamma-positive CD4+ and CD8+ T lymphocytes and the suppression of IFN-gamma production from stimulated CD4+ and CD8+ T lymphocytes. There was no effect of exercise on the number of, or cytokine production from, IL-4-positive CD4+ or CD8+ T lymphocytes. These data provide support for the role of exercise-induced elevations in stress hormones in the regulation of type 1 T lymphocyte cytokine production and distribution.  相似文献   

2.
It has been reported that supplementation with the antioxidant vitamins C and E prevents the adaptive increases in mitochondrial biogenesis and GLUT4 expression induced by endurance exercise. We reevaluated the effects of these antioxidants on the adaptive responses of rat skeletal muscle to swimming in a short-term study consisting of 9 days of vitamins C and E with exercise during the last 3 days and a longer-term study consisting of 8 wk of antioxidant vitamins with exercise during the last 3 wk. The rats in the antioxidant groups were given 750 mg·kg body wt(-1)·day(-1) vitamin C and 150 mg·kg body wt(-1)·day(-1) vitamin E. In rats euthanized immediately after exercise, plasma TBARs were elevated in the control rats but not in the antioxidant-supplemented rats, providing evidence for an antioxidant effect. In rats euthanized 18 h after exercise there were large increases in insulin responsiveness of glucose transport in epitrochlearis muscles mediated by an approximately twofold increase in GLUT4 expression in both the short- and long-term treatment groups. The protein levels of a number of mitochondrial marker enzymes were also increased about twofold. Superoxide dismutases (SOD) 1 and 2 were increased about twofold in triceps muscle after 3 days of exercise, but only SOD2 was increased after 3 wk of exercise. There were no differences in the magnitudes of any of these adaptive responses between the control and antioxidant groups. These results show that very large doses of antioxidant vitamins do not prevent the exercise-induced adaptive responses of muscle mitochondria, GLUT4, and insulin action to exercise and have no effect on the level of these proteins in sedentary rats.  相似文献   

3.
Assessment of oxidative stress in lymphocytes with exercise   总被引:1,自引:0,他引:1  
This study investigated whether changes in the cellular composition of blood during exercise could partly account for observations of exercise-induced changes in lymphocyte oxidative stress markers. Markers of oxidative stress were assessed before and after 60 min of intense treadmill running. Samples were collected from 16 men (means ± SD: age 33 ± 13 yr; body mass index 23.8 ± 2.5 kg/m(2); maximal oxygen uptake 59.7 ± 5.2 ml·kg(-1)·min(-1)). Peripheral blood lymphocytes were assayed for protein carbonyl concentration, and plasma was assessed for lipid peroxides and antioxidant capacity. In a separate study, intracellular thiol concentration was determined in lymphocyte subsets from eight characteristically similar men by flow cytometry, of which T-cell memory populations were further identified on the basis of CD27, CD28, and CD45RA expression. Total lymphocyte protein carbonyls were transiently increased with exercise and returned to baseline within 15 min (P < 0.001). This change was accompanied by an increase in plasma lipid peroxides (P < 0.05) and total antioxidant capacity (P < 0.001). Correlation analyses showed that lymphocyte protein carbonyl content was not related to changes in the cellular composition of peripheral blood during exercise. Natural killer cells (CD3(-)CD56(+)) and late-differentiated/effector memory cells (CD4(+)/CD8(+)CD27(-)CD28(-)/CD45RA(+)), which mobilized most with exercise, showed high intracellular thiol content (P < 0.001). High thiol content suggests a lower oxidative load carried by these lymphocytes. Thus vigorous exercise resulted in a transient increase in lymphocyte oxidative stress. Results suggest this was unrelated to the alterations in the cellular composition of peripheral blood.  相似文献   

4.
Vitamin C and E supplementation has been shown to attenuate the acute exercise-induced increase in plasma interleukin-6 (IL-6) concentration. Here, we studied the effect of antioxidant vitamins on the regulation of IL-6 expression in muscle and the circulation in response to acute exercise before and after high-intensity endurance exercise training. Twenty-one young healthy men were allocated into either a vitamin (VT; vitamin C and E, n = 11) or a placebo (PL, n = 10) group. A 1-h acute bicycling exercise trial at 65% of maximal power output was performed before and after 12 wk of progressive endurance exercise training. In response to training, the acute exercise-induced IL-6 response was attenuated in PL (P < 0.02), but not in VT (P = 0.82). However, no clear difference between groups was observed (group × training: P = 0.13). Endurance exercise training also attenuated the acute exercise-induced increase in muscle-IL-6 mRNA in both groups. Oxidative stress, assessed by plasma protein carbonyls concentration, was overall higher in the VT compared with the PL group (group effect: P < 0.005). This was accompanied by a general increase in skeletal muscle mRNA expression of antioxidative enzymes, including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results indicate that, although vitamin C and E supplementation may attenuate exercise-induced increases in plasma IL-6 there is no clear additive effect when combined with endurance training.  相似文献   

5.
6.
Previous studies suggest that prostaglandins may contribute to exercise-induced increases in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA was measured at rest and during exercise before and after oral administration of ketoprofen, a cyclooxygenase inhibitor, or placebo. Twenty-one subjects completed two bouts of graded dynamic and isometric handgrip to fatigue. Each exercise bout was followed by 2 min of postexercise muscle ischemia. The second exercise bouts were performed after 60 min of rest in which 11 subjects were given ketoprofen (300 mg) and 10 subjects received a placebo. Ketoprofen significantly lowered plasma thromboxane B(2) in the drug group (from 36 +/- 6 to 22 +/- 3 pg/ml, P < 0.04), whereas thromboxane B(2) in the placebo group increased from 40 +/- 5 to 61 +/- 9 pg/ml from trial 1 to trial 2 (P < 0.008). Ketoprofen and placebo did not change sympathetic and cardiovascular responses to dynamic handgrip, isometric handgrip, and postexercise muscle ischemia. There was no relationship between thromboxane B(2) concentrations and MSNA or arterial pressure responses during both exercise modes. The data indicate that physiological increases or decreases in prostaglandins do not alter exercise-induced increases in MSNA and arterial pressure in humans. These findings suggest that contraction-induced metabolites other than prostaglandins mediate MSNA responses to exercise in humans.  相似文献   

7.
This study investigated the effects of antioxidant vitamin supplementation upon muscle contractile function following eccentric exercise and was performed double blind. Twenty-four physically active young subjects ingested either placebo (400 mg; n = 8), vitamin E (400 mg; n=8) or vitamin C (400 mg; n = 8) for 21 days prior to and for 7 days after performing 60 min of box-stepping exercise. Contractile function of the triceps surae was assessed by the measurement of maximal voluntary contraction (MVC) and the ratio of the force generated at 20 Hz and 50 Hz tetanic stimulation before and after eccentric exercise and for 7 days during recovery. Following eccentric exercise, MVC decreased to 75 (4) % [mean (SE); n = 24; P < 0.05] of the preexercise values and the 20/50 Hz ratio of tetanic tension from 0.76 (0.01) to 0.49 (0.03) [mean (SE); n = 24; P<0.05). Compared to the placebo group no significant changes in MVC were observed immediately post-exercise, though recovery of MVC in the first 24 h post-exercise was greater in the group supplemented with vitamin C. The decrease in 20/50 Hz ratio of tetanic tension was significantly less (P < 0.05) post-exercise and in the initial phase of recovery in subjects supplemented with vitamin C but not with vitamin E. These data suggest that prior vitamin C supplementation may exert a protective effect against eccentric exercise-induced muscle damage.  相似文献   

8.
It has been reported that exercise induces oxidative stress and causes adaptations in antioxidant defences. The aim of this study was to determine the adaptations of lymphocytes to the oxidative stress induced by an exhaustive exercise. Nine voluntary male subjects participated in the study. The exercise was a cycling mountain stage (171.8 km), and the cyclists took a mean of 283 min to complete it. Blood samples were taken the morning of the cycling stage day, after overnight fasting, and 3 h after finishing the stage. We determined the blood glutathione redox status (GSSG/GSH), lymphocyte antioxidant enzyme activities and superoxide dismutase (SOD) levels; the plasma and lymphocyte vitamin E levels; the serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities and urate levels; the plasma carotene and malonaldehyde (MDA) levels; and the lymphocyte carbonyl index. The cycling stage induced significant increases in blood-oxidized (glutathione/GSSG), plasma MDA and serum urate levels. The exercise also produced increases in CK and LDH serum activities. The mountain cycling stage induced significant increases in lymphocyte vitamin E levels, glutathione peroxidase and glutathione reductase activities as well as increased SOD activity and protein levels. The protein carbonyl levels increased significantly in lymphocytes after the stage. In conclusion, in spite of increasing antioxidant defences in response to the oxidative stress induced by the exhaustive exercise, lymphocyte oxidative damage was produced after the stage as demonstrated by the increased carbonyl index even in very well trained athletes.  相似文献   

9.
The effects of acute exercise on the mRNA content of selected genes were examined during control conditions and after oral intake of antioxidants. In addition, to provide evidence for formation of reactive oxygen species (ROS) in human skeletal muscle during exercise, cytochrome c reduction was measured in microdialysate from the muscle. For the study on the effects of antioxidants on mRNA content, seven healthy, habitually active, male subjects participated in a double-blinded experimental design in which they, on one occasion, received a placebo and, on another, a mixture of antioxidants containing 1500 mg vitamin C, 120 mg coenzyme Q, and 345 mg alpha-tocopherol every day for 7 days before the experiment. On the experimental day the subjects cycled for 90 min and muscle biopsies were taken preexercise and at 1, 3, and 5 h after exercise. Exercise induced an increase in the eNOS, UCP3, PGC-1alpha, VEGF, Hsp72, and HO-1 mRNA content (p < 0.001), whereas there was no change in the Hsc70 mRNA level. Prior antioxidant treatment further enhanced (p < 0.05) the eNOS and UCP3 mRNA content after exercise. Moreover, the overall level of Hsc70 mRNA tended (p = 0.07) to be higher after antioxidant treatment. In another group of healthy male subjects, cytochrome c reduction was determined in microdialysate from the thigh muscle at rest and during knee extensor exercise to determine ROS formation. There was a significant increase in cytochrome c reduction with exercise both at 14 ( approximately 25%) and at 30 W ( approximately 50%). The data show that ROS are formed within skeletal muscle during exercise and that oral intake of antioxidants can enhance the exercise-induced adaptive mRNA responses of eNOS and UCP3.  相似文献   

10.
This study was designed to test the hypothesis that elevated plasma noradrenaline concentrations contribute to the exercise-induced modulation of the activity and percentage of the natural killer (NK) cells, and the leucocyte concentration. In a single blind, controlled, cross-over study, eight healthy men had noradrenaline infused for 1 h and achieved plasma noradrenaline concentrations comparable (20-fold increment) to those previously observed in cycle ergometer exercise (75% of maximal oxygen uptake for 1 h). The noradrenaline infusion increased the unstimulated, the interleukin-2 and interferon-alpha stimulated NK cell activity, and the percentage of CD16+ cells. The natural lytic activity per CD16+ cell however, did not change. The concentration of neutrophils, lymphocytes and CD16+ cells increased during the infusion. The neutrophil concentration remained elevated 2 h after infusion, at which time the lymphocyte count was back to normal. These results are comparable with the effects in the exercise model, and it is suggested that the augmented plasma noradrenaline concentrations, seen during extreme exercise, may participate in the exercise-induced immune changes.  相似文献   

11.
Increased levels of reactive oxygen and nitrogen species, as seen in response to exercise, challenge the cellular integrity. Important protective adaptive changes include induction of heat shock proteins (HSPs). We hypothesized that supplementation with antioxidant vitamins C (ascorbic acid) and E (tocopherol) would attenuate the exercise-induced increase of HSP72 in the skeletal muscle and in the circulation. Using randomization, we allocated 21 young men into three groups receiving one of the following oral supplementations: RRR-alpha-tocopherol 400 IU/day + ascorbic acid (AA) 500 mg/day (CEalpha), RRR-alpha-tocopherol 290 IU/day + RRR-gamma-tocopherol 130 IU/day + AA 500 mg/day (CEalphagamma), or placebo (Control). After 28 days of supplementation, the subjects performed 3 h of knee extensor exercise at 50% of the maximal power output. HSP72 mRNA and protein content was determined in muscle biopsies obtained from vastus lateralis at rest (0 h), postexercise (3 h), and after a 3-h recovery (6 h). In addition, blood was sampled for measurements of HSP72, alpha-tocopherol, gamma-tocopherol, AA, and 8-iso-prostaglandin-F2alpha (8-PGF2alpha). Postsupplementation, the groups differed with respect to plasma vitamin levels. The marker of lipid peroxidation, 8-iso-PGF2alpha, increased from 0 h to 3 h in all groups, however, markedly less (P < 0.05) in CEalpha. In Control, skeletal muscle HSP72 mRNA content increased 2.5-fold (P < 0.05) and serum HSP72 protein increased 4-fold (P < 0.05) in response to exercise, whereas a significant increase of skeletal muscle HSP72 protein content was not observed (P = 0.07). In CEalpha, skeletal muscle HSP72 mRNA, HSP72 protein, and serum HSP72 were not different from Control in response to exercise. In contrast, the effect of exercise on skeletal muscle HSP72 mRNA and protein, as well as circulating HSP72, was completely blunted in CEalphagamma. The results indicate that gamma-tocopherol comprises a potent inhibitor of the exercise-induced increase of HSP72 in skeletal muscle as well as in the circulation.  相似文献   

12.
In response to exercise, both CD4(+) and CD8(+) T cells are mobilized to the blood, but the levels of these cells decline below preexercise values in the postexercise period. T cells are functionally polarized, depending on the cytokines they produce. Type 1 cells produce, e.g., interferon (INF)-gamma, whereas type 2 produce, e.g., interleukin (IL)-4. It was recently demonstrated that exercise induces a decrease in the percentage of type 1 T cells. The present study further investigated the mechanisms underlying the exercise-induced shift in the balance between type 1 and type 2 cytokine-producing cells. Seven healthy men performed 1.5 h of treadmill running with blood samples drawn before exercise, at the end of exercise, and 2 h after exercise. Intracellular expression of IFN-gamma, IL-2, and IL-4 was detected in CD4(+) and CD8(+) T cells after stimulation with phorbol 12-myristate 13-acetate and ionomycin. Intracellular expression of IFN-gamma within CD8(+) cells was decreased in the postexercise period compared with values obtained immediately after exercise, whereas the expression of IL-2 and IL-4 did not change within the CD4(+) and CD8(+) cell populations. The decrease in IFN-gamma-producing CD8(+) T cells postexercise was negatively correlated with a decrease in percentage of memory T cells within the CD8(+) cells (r = -0.94; P < or = 0.002). In conclusion, this study demonstrates that the exercise-induced change in type 1 cytokine-producing T cells is related to a decline in memory cells.  相似文献   

13.
Several micronutrient supplementation strategies are used to cope with oxidative stress, although their benefits have recently been questioned. The aim of the present study was to examine the effects of DL-α-lipoic acid (LA) in response to acute exercise and during recovery in horses. Six standardbred trotters were tested on the treadmill before and after 5-week LA supplementation (25 mg/kg body weight/day). According to electron paramagnetic resonance measurements, strenuous aerobic exercise increased significantly free radical formation in the gluteus medius muscle, which was prevented by LA supplementation. The activities of thioredoxin reductase and glutathione reductase in muscle were significantly increased in LA-treated horses, but neither LA nor exercise affected muscle thioredoxin activity. LA increased the concentration of total glutathione in muscle at rest and during recovery. Treatment with LA blunted the exercise-induced increase in plasma oxygen radical absorbance capacity and decreased the post-exercise levels of lipid hydroperoxides in plasma and malondialdehyde in plasma and in muscle. These findings suggest that LA enhances thiol antioxidant defences and decreases exercise-induced oxidative stress in skeletal muscle.  相似文献   

14.
Prolonged strenuous exercise is followed by a temporary functional immune impairment. Low numbers of CD4+ T helper (Th) and CD8+ T cytotoxic (Tc) cells are found in the circulation. These cells can be divided according to their cytokine profile into type 1 (Th1 and Tc1), which produce interferon-gamma and interleukin (IL)-2, and type 2 (Th2 and Tc2) cells, which produce IL-4. The question addressed in the present study was whether exercise affected the relative balance between the circulating levels of these cytokine-producing T cells. Nine male runners performed treadmill running for 2.5 h at 75% of maximal oxygen consumption. The intracellular expression of cytokines was detected following stimulation with ionomycin and phorbol 12-myristate 13-acetate in blood obtained before, during, and after exercise. The percentage of type 1 T cells in the circulation was suppressed at the end of exercise and 2 h after exercise, whereas no changes were found in the percentage of type 2 T cells. Plasma epinephrine correlated negatively with the percentage of circulating CD8+ T cells producing IL-2, whereas peak IL-6 correlated with the percentage of CD8+ IL-4-producing T cells in the circulation. Peak plasma IL-6 correlated with plasma cortisol postrunning. In conclusion, the postexercise decrease in T lymphocyte number is accompanied by a more pronounced decrease in type 1 T cells, which may be linked to high plasma epinephrine. Furthermore, IL-6 may stimulate type 2 T cells, thereby maintaining a relatively unaltered percentage of these cells in the circulation compared with total circulating lymphocyte number.  相似文献   

15.
This study investigated the supplementation with vitamin C or/and E on the antioxidant system in hemodialysis patients. Thirty-eight hemodialysis patients (27 males and 11 females) with the average of 60 years old were divided into four groups: placebo (400 mg starch/time), vitamin C (400 mg/time)-, vitamin E (400 mg d,l- alpha-tocopheryl acetate/time)-, and vitamin C (400 mg/time) + E (400 mg d,l- alpha-tocopheryl acetate/time)-supplemented groups for 6-week supplementation. The patients orally received three capsules of placebo or antioxidant(s) three times a week after finishing hemodialysis. Thirty-six healthy subjects (22 males and 14 females) with the average of 58 years old were recruited as the control group. Hemodialysis patients significantly decreased plasma vitamin C by 32%, erythrocyte glutathione by 26%, and plasma total antioxidant status by 9%, but increased plasma lipid peroxide levels by 102% compared with the control group at the baseline. The levels of plasma vitamin C and total antioxidant status significantly decreased by 24% and 18%, respectively, from the post-dialysate compared with those from the pre-dialysate. At week 6, vitamin C + E-supplemented group significantly increased plasma vitamin C and E, erythrocyte glutathione, and plasma antioxidant status, and inhibited plasma lipid peroxides compared with placebo group. Additionally, vitamin C + E-supplemented group had higher plasma vitamin C, vitamin E, and total antioxidant status, and lower plasma lipid peroxides than placebo group even at least 2 weeks after the termination of the supplements. Therefore, antioxidant vitamin supplements could improve antioxidant status and decrease lipid peroxides of hemodialysis patients.  相似文献   

16.
There has been no investigation to determine if the widely used over-the-counter, water-soluble antioxidants vitamin C and N-acetyl-cysteine (NAC) could act as pro-oxidants in humans during inflammatory conditions. We induced an acute-phase inflammatory response by an eccentric arm muscle injury. The inflammation was characterized by edema, swelling, pain, and increases in plasma inflammatory indicators, myeloperoxidase and interleukin-6. Immediately following the injury, subjects consumed a placebo or vitamin C (12.5 mg/kg body weight) and NAC (10 mg/kg body weight) for 7 d. The resulting muscle injury caused increased levels of serum bleomycin-detectable iron and the amount of iron was higher in the vitamin C and NAC group. The concentrations of lactate dehydrogenase (LDH), creatine kinase (CK), and myoglobin were significantly elevated 2, 3, and 4 d postinjury and returned to baseline levels by day 7. In addition, LDH and CK activities were elevated to a greater extent in the vitamin C and NAC group. Levels of markers for oxidative stress (lipid hydroperoxides and 8-iso prostaglandin F2alpha; 8-Iso-PGF2alpha) and antioxidant enzyme activities were also elevated post-injury. The subjects receiving vitamin C and NAC had higher levels of lipid hydroperoxides and 8-Iso-PGF2alpha 2 d after the exercise. This acute human inflammatory model strongly suggests that vitamin C and NAC supplementation immediately post-injury, transiently increases tissue damage and oxidative stress.  相似文献   

17.
Recent investigations suggest that cellular redox status may play a key role in the regulation of several immune functions. Treatment of lymphocytes with vitamin K3 (menadione) resulted in a significant decrease in cellular GSH/GSSG ratio and concomitant increase in the ROS levels. It also suppressed Concanavalin A (Con A)-induced proliferation and cytokine production in lymphocytes and CD4 + T cells in vitro. Immunosuppressive effects of menadione were abrogated only by thiol containing antioxidants. Mass spectrometric analysis showed that menadione directly interacted with thiol antioxidant GSH. Menadione completely suppressed Con A-induced activation of ERK, JNK and NF-κB in lymphocytes. It also significantly decreased the homeostasis driven proliferation of syngeneic CD4 + T cells. Further, menadione significantly delayed graft-vs-host disease morbidity and mortality in mice. Menadione suppressed phytohemagglutinin-induced cytokine production in human peripheral blood mononuclear cells. These results reveal that cellular redox perturbation by menadione is responsible for significant suppression of lymphocyte responses.  相似文献   

18.

Background

Age-related changes of the immune system, termed immunosenescence, may underlie the increased risk of infections and morbidity in the elderly. Little is known about the effects of acute exercise on peripheral immune parameters in octogenarians. Therefore, we investigated acute exercise-induced changes in phenotype and function of the immune system in octogenarians participating in the 2013 edition of the Nijmegen Four Days Marches. Blood sampling was performed at baseline and immediately after 4 days of the walking exercise (30 km/day). A comprehensive set of adaptive and innate immune traits were enumerated and analyzed by flow-cytometry. Peripheral blood mononuclear cells, isolated before and after walking were stimulated with LPS and supernatants were analysed for IL-1β, IL-6, IL-8 and TNF-α concentrations by ELISA. CMV serostatus was determined by ELISA.

Results

The walking exercise induced a clear leucocytosis with numerical increases of granulocytes, monocytes and lymphocytes. These exercise-induced changes were most profound in CMV seropositive subjects. Within lymphocytes, numerical increases of particularly CD4+ T cells were noted. Further T cell differentiation analysis revealed profound increases of naïve CD4+ T cells, including naïve Treg. Significant increases were also noted for CD4+ memory T cell subsets. In contrast, only slight increases in naïve and memory CD8+ T cell subsets were detected. Exercise did not affect markers of immune exhaustion in memory T cell subsets. NK cells demonstrated a numerical decline and a change in cellular composition with a selective decrease of the mature CD56dim NK cells. The latter was seen in CMV seronegative subjects only. Also, a higher IL-6 and IL-8 production capacity of LPS-stimulated PBMC was seen after walking.

Conclusion

In this exceptional cohort of octogenarian walkers, acute exercise induced changes in immune cell numbers and functions. A clear response of CD4+ T cells, rather than CD8+ T cells or NK cells was noted. Remarkably, the response to exercise within the CD4+ T cell compartment was dominated by naïve CD4+ subsets.
  相似文献   

19.
Antioxidant nutrients have demonstrated potential in protecting against exercise-induced oxidative stress. alpha-Lipoic acid (LA) is a proglutathione dietary supplement that is known to strengthen the antioxidant network. We studied the effect of intragastric LA supplementation (150 mg/kg, 8 wk) on tissue LA levels, glutathione metabolism, and lipid peroxidation in rats at rest and after exhaustive treadmill exercise. LA supplementation increased the level of free LA in the red gastrocnemius muscle and increased total glutathione levels in the liver and blood. The exercise-induced decrease in heart glutathione S-transferase activity was prevented by LA supplementation. Exhaustive exercise significantly increased thiobarbituric acid-reactive substance levels in the liver and red gastrocnemius muscle. LA supplementation protected against oxidative lipid damage in the heart, liver, and red gastrocnemius muscle. This study reports that orally supplemented LA is able to favorably influence tissue antioxidant defenses and counteract lipid peroxidation at rest and in response to exercise.  相似文献   

20.
The effects of physical fitness on leukocyte demargination and cellular adhesion molecule (CAM) responses to moderate exercise were examined. We assessed leukocyte subsets and CAM expression before, immediately after, and 10 min after a 20-min treadmill exercise at 65-70% peak oxygen consumption in fit vs. nonfit individuals. Physical fitness was determined by peak oxygen consumption during a treadmill test. Catecholamine levels were determined by radioenzymatic assay, and enumeration of cells and detection of CAM expression were assessed by flow cytometry. As expected, exercise led to significant increases in numbers of leukocyte subsets, regardless of fitness level (P < 0.01). Values returned to near resting levels 10 min after exercise. More importantly, physically fit individuals showed attenuated responses to the moderate-exercise challenge in numbers of CD3(+), CD4(+), CD8(+), memory (CD45RO(+)) CD4, and naive (CD45RA(+)62L(+)) CD4 and CD8 lymphocytes. Postexercise human leukocyte antigen-DR absent memory CD4(+) cell numbers were also lower in fit subjects. Increases in CD62L-expressing CD4(+) and CD8(+) lymphocytes and CD11a- expressing lymphocytes after exercise were also attenuated in fit individuals compared with nonfit individuals (P < 0.05). Catecholamine levels increased to a similar extent (P < 0.01) in both fitness groups. The findings suggest that physical fitness attenuates demargination of selected lymphocyte subsets in response to moderate exercise. Although the differences in plasma catecholamine responses were not significant between the groups, a possible mediating role of the sympathetic system remains to be further investigated. Being physically fit may offset exaggerated immune cell responses to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号