首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lecithin retinol acyltransferase (LRAT) is a 230 amino acids membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. The enzymatic activity of a truncated form of LRAT (tLRAT) which contains the residues required for catalysis but which is lacking N- and C-terminal hydrophobic segments has been shown to depend on the detergent used for its solubilization. Moreover, it is unknown whether tLRAT can bind membranes in the absence of these hydrophobic segments. The present study has allowed to measure the membrane binding and hydrolytic action of tLRAT in lipid monolayers by use of polarization modulation infrared reflection absorption spectroscopy and Brewster angle microscopy. Moreover, the proportion of the secondary structure components of tLRAT was determined in three different detergents by infrared absorption spectroscopy, vibrational circular dichroism and electronic circular dichroism which allowed to explain its detergent dependent activity. In addition, the secondary structure of tLRAT in the absence of detergent was very similar to that in Triton X-100 thus suggesting that, compared to the other detergents assayed, the secondary structure of this protein is very little perturbed by this detergent.  相似文献   

2.
Lecithin:retinol acyltransferase (LRAT) plays a major role in the vertebrate visual cycle. Indeed, it is responsible for the esterification of all-trans retinol into all-trans retinyl esters, which can then be stored in microsomes or further metabolized to produce the chromophore of rhodopsin. In the present study, a detailed characterization of the enzymatic properties of truncated LRAT (tLRAT) has been achieved using in vitro assay conditions. A much larger tLRAT activity has been obtained compared to previous reports and to an enzyme with a similar activity. In addition, tLRAT is able to hydrolyze phospholipids bearing different chain lengths with a preference for micellar aggregated substrates. It therefore presents an interfacial activation property, which is typical of classical phospholipases. Furthermore, given that stability is a very important quality of an enzyme, the influence of different parameters on the activity and stability of tLRAT has thus been studied in detail. For example, storage buffer has a strong effect on tLRAT activity and high enzyme stability has been observed at room temperature. The thermostability of tLRAT has also been investigated using circular dichroism and infrared spectroscopy. A decrease in the activity of tLRAT was observed beyond 70 °C, accompanied by a modification of its secondary structure, i.e. a decrease of its α-helical content and the appearance of unordered structures and aggregated β-sheets. Nevertheless, residual activity could still be observed after heating tLRAT up to 100 °C. The results of this study highly improved our understanding of this enzyme.  相似文献   

3.
The structure of phospholamban, a 30-kDa oligomeric protein integral to cardiac sarcoplasmic reticulum, was probed using ultraviolet absorbance and circular dichroism spectroscopy. Purified phospholamban was examined in three detergents: octyl glucoside, n-dodecyloctaethylene glycol monoether (C12E8) and sodium dodecyl sulfate (SDS). Ultraviolet absorption spectra of phospholamban reflected its aromatic amino acid content: absorption peaks at 275-277 nm and 253, 259, 265 and 268 nm were attributed to phospholamban's one tyrosine and two phenylalanines, respectively. Phospholamban phosphorylated at serine 16 by the catalytic subunit of cAMP-dependent protein kinase exhibited no absorbance changes when examined in C12E8 or SDS. Circular dichroism spectroscopy at 250-190 nm demonstrated that phospholamban possesses a very high content of alpha-helix in all three detergents and is unusually resistant to denaturation. Dissociation of phospholamban subunits by boiling in SDS increased the helical content, suggesting that the highly ordered structure is not dependent upon oligomeric interactions. The purified COOH-terminal tryptic fragment of phospholamban, containing residues 26-52 and comprising the hydrophobic, putative membrane-spanning domain, also exhibited a circular dichroism spectrum characteristic of alpha-helix. Circular dichroism spectra of phosphorylated and dephosphorylated phospholamban were very similar, indicating that phosphorylation does not alter phospholamban secondary structure significantly. The results are consistent with a two-domain model of phospholamban in which each domain contains a helix and phosphorylation may act to rotate one domain relative to the other.  相似文献   

4.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

5.
The preparation of a pure and homogeneous protein sample at proper concentration is a prerequisite for success when attempting their crystallization for structural determination. The detergents suitable for solubilization particularly of membrane proteins are not always the best for crystallization. Myelin of the peripheral nervous system of vertebrates is the example of a membrane for which neutral or "gentle" detergents are not even strong enough to solubilize its proteins. In contrast, sodium- or lithium-dodecyl sulfate is very effective. We solubilized myelin membrane in 2%(w/v) sodium dodecyl sulfate, followed by chromatographic purification of the hydrophobic myelin glycoproteins P0 and PASII/PMP22, and finally, we have exchanged the sodium dodecyl sulfate bound to protein for other neutral detergents using ceramic hydroxyapatite column. Theoretically, we should easily exchange sodium dodecyl sulfate for any neutral detergent, but for some of them, the solubility of myelin glycoproteins is low. To monitor the potential variability in the secondary structure of glycoproteins, we have used circular dichroism. Sodium dodecyl sulfate seems to be the appropriate detergent for the purpose of purification of very hydrophobic glycoproteins, since it can be easily exchanged for another neutral detergent.  相似文献   

6.
The secondary structure content of the recombinant human mu-opioid receptor (HuMOR) solubilized in trifluoroethanol (TFE) and in detergent micelles was investigated by circular dichroism. In both conditions, this G protein-coupled receptor adopts a characteristic alpha-helical structure, with minima at 208 and 222 nm as observed in the circular dichroism spectra. After deconvolution of spectra, the alpha-helix contents were estimated to be in the range of 50% in TFE and in sodium dodecyl sulfate at pH 6. These values are in accordance with the predicted secondary structure content determined for the mu-opioid receptor. A pH-dependent effect was observed on the secondary structure of the receptor solubilized in detergents, which demonstrates the essential role of ionic and hydrophobic interactions on the secondary structure. Circular dichroism spectra of EGFP-HuMOR, a fusion protein between the enhanced green fluorescent protein (EGFP) and the mu-opioid receptor, and EGFP solubilized in TFE were also analyzed as part of this study.  相似文献   

7.
Bok D  Ruiz A  Yaron O  Jahng WJ  Ray A  Xue L  Rando RR 《Biochemistry》2003,42(20):6090-6098
Lecithin retinol acyltransferase (LRAT) catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester, an essential reaction in the vertebrate visual cycle. Since all-trans-retinyl esters are the substrates for the isomerization reaction that generates 11-cis-retinoids, this esterification reaction is essential in the operation of the visual cycle. In addition, LRAT is the founder member of a series of proteins, which are of novel sequence and have unknown functions. Native LRAT is an integral membrane protein and has never been purified. To obtain a pure LRAT, the N- and C-transmembrane termini were deleted and replaced with a poly His tag for the purpose of purification. This truncated form of LRAT, referred to as tLRAT, has been expressed in bacteria and fully purified. tLRAT is catalytically active and processes all-trans-retinol at least 10-fold more efficiently than 11-cis-retinol, the precursor to the visual chromophore. While tLRAT can be robustly expressed in bacteria, it requires detergent for extraction, as the enzyme still contains hydrophobic domains, which may interact. Indeed, tLRAT can oligomerize and forms dimers. Native LRAT also forms functional homodimers. These studies pave the way for the preparation of large-scale amounts of pure tLRAT for further mechanistic and structural studies.  相似文献   

8.
Seed lipid bodies constitute natural emulsions stabilized by specialized integral membrane proteins, among which the most abundant are oleosins, followed by the calcium binding caleosin. These proteins exhibit a triblock structure, with a highly hydrophobic central region comprising up to 71 residues. Little is known on their three-dimensional structure. Here we report the solubilization of caleosin and of two oleosins in aqueous solution, using various detergents or original amphiphilic polymers, amphipols. All three proteins, insoluble in water buffers, were maintained soluble either by anionic detergents or amphipols. Neutral detergents were ineffective. In complex with amphipols the oleosins and caleosin contain more beta and less alpha secondary structures than in the SDS detergent, as evaluated by synchrotron radiation circular dichroism. These are the first reported structural results on lipid bodies proteins maintained in solution with amphipols, a promising alternative to notoriously denaturing detergents.  相似文献   

9.
The mechanism of the interaction between bovine serum albumin (BSA) and desvenlafaxine was studied using fluorescence, ultraviolet absorption, 3‐dimensional fluorescence spectroscopy, circular dichroism, synchronous fluorescence spectroscopy, cyclic voltametry, differential scanning calorimetry, and attenuated total reflection–Fourier transform infrared spectroscopic techniques under physiological condition at pH 7.4. Stern‐Volmer calculations authenticate the fluorescence of BSA that was quenched by desvenlafaxine in a collision quenching mode. The fluorescence quenching method was used to evaluate number of binding sites “n” and binding constant K A that were measured, and various thermodynamic parameters were evaluated at different temperatures by using the van't Hoff equation and differential scanning calorimetry technique, which indicated a spontaneous and hydrophobic interaction between BSA and desvenlafaxine. According to the Förster theory we calculate the distance between the donor, BSA and acceptor, desvenlafaxine molecules. Furthermore, circular dichroism and attenuated total reflection–Fourier transform infrared spectroscopy indicate nominal changes in the secondary structure of the protein.  相似文献   

10.
FsrC is the membrane-bound histidine kinase component of the Fsr two-component signal transduction system involved in quorum sensing in the hospital-acquired infection agent Enterococcus faecalis. Synchrotron radiation circular dichroism spectroscopy was used here to study the intact purified protein solubilised in detergent micelles. Conditions required for FsrC stability in detergent were firstly determined and tested by prolonged exposure of stabilised protein to far-ultraviolet radiation. Using stabilised purified protein, far-ultraviolet synchrotron radiation circular dichroism revealed that FsrC is 61% α-helical and that it is relatively thermostable, retaining at least 57% secondary structural integrity at 90°C in the presence or absence of gelatinase biosynthesis-activating pheromone (GBAP). Whilst binding of the quorum pheromone ligand GBAP did not significantly affect FsrC secondary structure, near-ultraviolet spectra revealed that the tertiary structure in the regions of the Tyr and Trp residues was significantly affected. Titration experiments revealed a calculated k(d) value of 2μM indicative of relatively loose binding of gelatinase biosynthesis-activating pheromone to FsrC. Although use of synchrotron radiation circular dichroism has been applied to membrane proteins previously, to our knowledge this is the first report of its use to determine a k(d) value for an intact membrane protein. Based on our findings, we suggest that synchrotron radiation circular dichroism will be a valuable technique for characterising ligand binding by other membrane sensor kinases and indeed other membrane proteins in general. It further provides a valuable screening tool for membrane protein stability under a range of detergent conditions prior to downstream structural methods such as crystallisation and NMR experiments particularly when lower detergent concentrations are used.  相似文献   

11.
Interaction of tubulin with non-denaturing amphiphiles.   总被引:1,自引:0,他引:1       下载免费PDF全文
J M Andreu 《The EMBO journal》1982,1(9):1105-1110
Soluble purified calf brain tubulin contains extensive and easily accessible regions capable of hydrophobic interactions. The binding of non-ionic and mild anionic detergents to this protein has been characterized by difference absorption spectroscopy and equilibrium gel chromatography with labelled ligands. Tubulin bound reversibly and co-operatively 0.42 +/- 0.05 g deoxycholate per g protein and bound octyl glucoside at a minimal stoichiometry of 0.26 g per g protein. Binding of deoxycholate and octyl glucoside perturbed the protein absorption, quenched the fluorescence, and produced a moderate change in the far u.v. circular dichroism of tubulin. These changes have been interpreted as the result of detergent binding near aromatic amino acids and the production of a structural change different from detergent-induced denaturation. Deoxycholate and octyl glucoside inhibited colchicine binding. Octyl glucoside and Triton X-100 inhibited the in vitro self-assembly of tubulin into microtubules, whereas small concentrations of deoxycholate were found to enhance microtubule formation.  相似文献   

12.
A novel artificial chaperone system, based on combination of oppositely charged detergents, was elaborated to refold soluble alkaline phosphatase. Upon dilution of urea-denatured alkaline phosphatase to a nondenaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to gradually remove the detergent molecules. In that respect, we used detergents with variable charges and tail lengths to initiate and complete the refolding process. The results obtained from various analyses (fluorescence, UV, circular dichroism, surface tension, turbidity measurements and activity assays) indicated that the extent of refolding assistance was different due to detergents structure and also the length of hydrophobic portion of each detergent. These observed differences were attributed to the strong electrostatic interactions among the capturing and stripping detergents used in this investigation. Collectively it is expected that protein refolding process can be achieved easier, cheaper and more efficient, using the new technique reported here.  相似文献   

13.
Three different approaches (propensity curve shifting, hydropathy index evaluation, and iterative attribution/cancellation of secondary structure) to the use of secondary structure percentages derived from circular dichroism measurements to improve the success rate of a protein secondary structure prediction method, without using decision constants, are described and compared. Propensity-curve shifting appears to be the best-performing approach, bearing an increase of 5.3% in the success rate of single-residue structural prediction when exact information on the secondary structure, obtained by X-ray crystallography, is employed; with information of an accuracy comparable to that obtainable by circular dichroism, the improvement stays between 3.5 and 4.9%, for a three-state prediction. Although developed with circular dichroism in mind, the method can use percentages of secondary structure obtained by any other experimental methodology from which they can be inferred, for instance Raman spectroscopy and infrared spectroscopy.  相似文献   

14.
The effectiveness is compared of the infrared spectroscopy in the amide I region and UV circular dichroism to the analysis of the protein secondary structure by the example of the linker histone H1 and bovine serum albumin (BSA). It has been shown that the application of a diamond ATR cell gives the quantitative estimate of the fraction of α-helices and β-structures which are in a good agreement with UV circular dichroism spectroscopy. It has been shown that the histone H1 is able to aggregate, which results in considerable changes in its secondary structure.  相似文献   

15.
The interactions of myelin basic protein with micelles of lysophosphatidylcholine detergents of different acyl chain lengths were investigated by circular dichroism (CD), small-angle X-ray scattering, Fourier transform infrared spectroscopy (FT-IR), and 1H, 13C and 31P nuclear magnetic resonance spectroscopy (NMR). Circular dichroic, FT-IR, and 1H NMR measurements indicated that the conformational changes induced in the protein molecules by association with micelles depended on the acyl chain length of the detergents. Size is one of the physical properties of micelles which is a function of the length of the acyl chains. The radii of gyration of detergent micelles in complexes with the protein measured by small-angle X-ray scattering indicated that the average size of the micelles was a quadratic function of the acyl chain length. The dependence of the protein conformational changes on micelle size was used to ascertain the order in which different protein segments associate with the detergents. Several procedures were employed to change the fluidity of micelles formed with detergents of given acyl chain lengths. The conformational changes observed on the MBP molecule by varying the micelle properties without changing the length of the chain, suggested that the changes depended on the size and fluidity of the micelles.  相似文献   

16.
The interactions of myelin basic protein and peptides derived from it with detergent micelles of lysophosphatidylglycerol, lysophosphatidylserine, palmitoyllysophosphatidic acid, and sodium lauryl sulfate, and with mixed micelles of the neutral detergent dodecylphosphocholine and the negatively charged detergent palmitoyllysophosphatidic acid, were investigated by 1H NMR spectroscopy and circular dichroic spectropolarimetry. The results with single detergents suggested that there are discrete interaction sites in the protein molecule for neutral and anionic detergent micelles and that at least some of these sites are different for each type of detergent. The data on the binding of the protein and peptides to mixed detergent micelles suggested that intramolecular interactions in the intact protein and in one of the longer peptides limited the formation of helices and also that a balance between hydrophobic and ionic forces is achieved in the interactions of the peptides with the detergents. At high detergent/protein molar ratios, hydrophobic interactions appeared to be favored.  相似文献   

17.
The rapid increase in sequence data in combination with a greater understanding of the forces regulating protein structure has been the impetus for an upsurge in the development of theoretical prediction methods. These methods have afforded protein chemists the ability to identify and quantify the various secondary structures along the protein chain. Concurrently, various physico-chemical techniques have been developed such as nuclear Overhauser enhancement n.m.r. and laser Raman spectroscopy. In addition, traditional methods such as infrared and circular dichroism spectroscopy have been refined. Although both predictive and physico-chemical techniques are limited in the types of secondary structure they are capable of determining, they have provided valuable information with regards to protein folding and topology in the absence of X-ray data, and have formed the basis for the development of improved methods for secondary structure determination. This paper reviews some of the predictive and physico-chemical methods presently used to determine protein secondary structure.  相似文献   

18.
The conversion of protease-sensitive prion protein (PrP-sen) to a high beta-sheet, protease-resistant and often fibrillar form (PrP-res) is a central event in transmissible spongiform encephalopathies (TSE) or prion diseases. This conversion can be induced by PrP-res itself in cell-free conversion reactions. The detergent sodium N-lauroyl sarkosinate (sarkosyl) is a detergent that is widely used in PrP-res purifications and is known to stimulate the PrP-res-induced conversion reaction. Here we report effects of sarkosyl and other detergents on recombinant hamster PrP-sen purified from mammalian cells under oxidizing conditions that maintain the single native disulfide bond. Low concentrations of sarkosyl (0.001-0.1%) induced aggregation of PrP-sen molecules, increased light scattering, altered fluorescence excitation and emission spectra, and enhanced the proportion of beta-sheet secondary structure according to circular dichroism and infrared spectroscopies. An enhancement of beta-sheet content was also seen with 0.001% sodium dodecyl sulfate (SDS) but not several other types of detergents. Electron microscopy revealed that sarkosyl induced the formation of both amorphous and fibrillar aggregates. The fibrils appeared to be constructed from spherical bead-like protofibrils. Neither TSE infectivity nor the characteristic partial proteinase K resistance of PrP-res was detected in the sarkosyl-induced PrP aggregates. We conclude that certain anionic detergents can disrupt the conformation of PrP-sen and induce high beta-sheet aggregates that are distinct from scrapie-associated PrP-res in terms of protease-resistance, infrared spectrum and infectivity. These results reinforce the idea that not all high-beta aggregates of PrP are equivalent to the pathologic form, PrP-res.  相似文献   

19.
Detergent interaction with extramembranous soluble domains (ESDs) is not commonly considered an important determinant of integral membrane protein (IMP) behavior during purification and crystallization, even though ESDs contribute to the stability of many IMPs. Here we demonstrate that some generally nondenaturing detergents critically destabilize a model ESD, the first nucleotide‐binding domain (NBD1) from the human cystic fibrosis transmembrane conductance regulator (CFTR), a model IMP. Notably, the detergents show equivalent trends in their influence on the stability of isolated NBD1 and full‐length CFTR. We used differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy to monitor changes in NBD1 stability and secondary structure, respectively, during titration with a series of detergents. Their effective harshness in these assays mirrors that widely accepted for their interaction with IMPs, i.e., anionic > zwitterionic > nonionic. It is noteworthy that including lipids or nonionic detergents is shown to mitigate detergent harshness, as will limiting contact time. We infer three thermodynamic mechanisms from the observed thermal destabilization by monomer or micelle: (i) binding to the unfolded state with no change in the native structure (all detergent classes); (ii) native state binding that alters thermodynamic properties and perhaps conformation (nonionic detergents); and (iii) detergent binding that directly leads to denaturation of the native state (anionic and zwitterionic). These results demonstrate that the accepted model for the harshness of detergents applies to their interaction with an ESD. It is concluded that destabilization of extramembranous soluble domains by specific detergents will influence the stability of some IMPs during purification.  相似文献   

20.
High-resolution structural analysis of membrane proteins by X-ray crystallography or solution NMR spectroscopy often requires their solubilization in the membrane-mimetic environments of detergents. Yet the choice of a detergent suitable for a given study remains largely empirical. In the present work, we considered the micelle-crystallized structures of lactose permease (LacY), the sodium/galactose symporter (vSGLT), the vitamin B(12) transporter (BtuCD), and the arginine/agmatine antiporter (AdiC). Representative transmembrane (TM) segments were selected from these proteins based on their relative contact(s) with water, lipid, and/or within the protein, and were synthesized as Lys-tagged peptides. Each peptide was studied by circular dichroism and fluorescence spectroscopy in water, and in the presence of the detergents sodium dodecylsulfate (SDS, anionic); n-dodecyl phosphatidylcholine (DPC, zwitterionic); n-dodecyl-β-d-maltoside (DDM, neutral); and n-octyl-β-d-glucoside (OG, neutral, varying acyl tail length). We found that (i) the secondary structures of the TM segments were statistically indistinguishable in the four detergents studied; and (ii) a strong correlation exists between the extent of helical structure of each individual TM segment in detergents with its helicity level as it exists in the full-length protein, indicating that helix adoption is fundamentally the same in both environments. The denaturing properties of so-called 'harsh' detergents may thus largely be due to their interactions with non-membranous regions of proteins. Given the consistency of structural features observed for each TM segment in a variety of micellar media, the overall results suggest that the structure likely corresponds to its relevant biological form in the intact protein in its native lipid bilayer environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号