首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(ADP-ribose) in the cellular response to DNA damage   总被引:32,自引:0,他引:32  
Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Electronmicroscopic studies show that poly(ADP-ribose) unwinds the tightly packed nucleosomal structure of isolated chromatin. Recent studies also show that the presence of poly(ADP-ribose) enhances the activity of DNA ligase. This may increase the capacity of the cell to complete DNA repair. Inhibitors of poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of poly(ADP-ribose) persists and the activated enzyme is capable of totally consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest.  相似文献   

2.
Modulation of chromatin structure by poly(ADP-ribosyl)ation   总被引:5,自引:0,他引:5  
Poly(ADP-ribose) polymerase is a nuclear enzyme that is highly conserved in eucaryotes. Its activity is totally dependent on the presence of DNA containing single or double stranded breaks. We have shown that this activation results in a decondensation of chromatin superstructure in vitro, which is caused mainly by hyper(ADP-ribosy)ation of histone H1. In core particles, the modification of histone H2B leads to a partial dissociation of DNA from core histones. The conformational change of native chromatin by poly(ADP-ribosyl)ation is reversible upon degradation of the histone H1-bound poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase. We propose that cuts produced in vivo on DNA during DNA repair activate poly(ADP-ribose) polymerase, which then synthesizes poly(ADP-ribose) on histone H1, in particular, and contributes to the opening of the 25-nm chromatin fiber, resulting in the increased accessibility of DNA to excision repair enzymes. This mechanism is fast and reversible.  相似文献   

3.
4.
It has been demonstrated recently by Poirier et al. (Poirier, G. G., de Murcia, G., Jongstra-Bilen, J., Niedergang, C., and Mandel, P. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3423-3427) that poly(ADP-ribosyl)ation of pancreatic nucleosomes causes relaxation of the chromatin superstructure through H1 modification. The in vitro effect of poly(ADP-ribose) synthesis and degradation on calf thymus chromatin was investigated by the time course incorporation of ADP-ribose, electron microscopy, analytical ultracentrifugation, and autoradiography of the protein acceptors. Purified calf thymus poly(ADP-ribose) polymerase and partially purified bull testis poly(ADP-ribose) glycohydrolase were used. Degradation of ADP-ribose units on hyper(ADP-ribosyl)ated H1 by poly(ADP-ribose) glycohydrolase restores the native condensed chromatin superstructure. This reversible conformational change induced by poly(ADP-ribosyl)ation on nucleosomal arrangement could be one of the mechanisms by which the accessibility of DNA polymerases and/or excision-repair enzymes is favored, the native structure being fully restorable.  相似文献   

5.
Yang WS  Kim JW  Lee JH  Choi BS  Joe CO 《FEBS letters》1999,449(1):33-35
The ability of poly(ADP-ribose)polymerase to bind damaged DNA was assessed by electrophoretic mobility shift assay. DNA binding domain of poly(ADP-ribose)polymerase (PARPDBD) binds to synthetic deoxyribonucleotide duplex 10-mer. However, the synthetic deoxyribonucleotide duplex containing cys-syn thymidine dimer which produces the unwinding of DNA helix structure lost its affinity to PARPDBD. It was shown that the binding of PARPDBD to the synthetic deoxyribonucleotide duplex was not affected by O6-Me-dG which causes only minor distortion of DNA helix structure. This study suggests that the stabilized DNA helix structure is important for poly(ADP-ribose)polymerase binding to DNA breaks, which are known to stimulate catalytic activity of poly(ADP-ribose)polymerase.  相似文献   

6.
The role of poly(ADP-ribosyl)ation in chromatin replication and the activity of poly(ADP-ribose) synthetase in the newly synthesized and old chromatin was studied. It was found that 3-aminobenzamide, which is an inhibitor of poly(ADP-ribose) synthetase, had no effect on the initiation of DNA synthesis and only a moderate effect on DNA chain elongation. However, poly(ADP-ribose) synthetase activity in the newly replicated chromatin was two to three times higher than that of the unreplicated chromatin.  相似文献   

7.
Poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase have been detected in chromatin extracts from the dinoflagellate Crypthecodinium cohnii. Poly(ADP-ribose) glycohydrolase was detected by the liberation of ADP-ribose from poly(ADP-ribose). Poly(ADP-ribose) polymerase was proved by (a) demonstration of phosphoribosyl-AMP in the phosphodiesterase digest of the reaction product, (b) demonstration of ADP-ribose oligomers by fractionation of the reaction product on DEAE-Sephadex. The (ADP-ribose)-protein transfer is dependent on DNA; it is inhibited by nicotinamide, thymidine, theophylline and benzamide. The protein-(ADP-ribose bond is susceptible to 0.1 M NaOH (70%) and 0.4 M NH2OH (33%). Dinoflagellates, nucleated protists, are unique in that their chromatin lacks histones and shows a conformation like bacterial chromatin [Loeblich, A. R., III (1976) J. Protozool. 23, 13--28]; poly(ADP-ribose) polymerase, however, has been found only in eucaryotes. Thus our results suggest that histones were not relevant to the establishment of poly(ADP-ribose) during evolution.  相似文献   

8.
Poly(ADP-ribose) polymerase is a chromatin enzyme which adds long chains of ADP-ribose to various acceptor proteins in response to DNA strand breaks. Its primary function is unknown; however, a role in DNA repair and radiation resistance has been postulated based largely on experiments with enzyme inhibitors. Recent reports of mutant cell lines, deficient in poly(ADP-ribose) polymerase activity, have supported previous studies with inhibitors, which suggests the involvement of poly(ADP-ribose) polymerase in maintaining baseline levels of sister chromatid exchanges. Mutant cells with even slightly depressed enzyme levels show large elevation of baseline sister chromatid exchanges. Since intracellular poly(ADP-ribose) polymerase levels can vary greatly between different nonmutant cell lines, we surveyed levels of baseline sister chromatid exchange in normal and tumor human cell lines and compared them with endogenous levels of poly(ADP-ribose) polymerase. Despite 10-fold differences in poly(ADP-ribose) polymerase, the baseline level of sister chromatid exchanges remained relatively constant in the different cell lines (0.13 +/- 0.03 SCE/chromosome), with no indication of a protective effect for cells with high levels of the enzyme.  相似文献   

9.
Isolated rat pancreatic polynucleosomes were poly(ADP-ribosylated) with purified calf thymus poly(ADP-ribose) polymerase. A time course study was performed using an NAD concentration of 200 microM and changes in nucleosomal structure were investigated by means of electron microscopy visualization and sedimentation velocity determinations. In parallel, analyses of histone H1 poly(ADP-ribosylation) and determinations of DNA polymerase alpha activity on ADP-ribosylated polynucleosomes were done at different time intervals. A direct kinetic correlation between ADP-ribose incorporation, polynucleosome relaxation amd histone H1 hyper-ADP-ribosylation was established. In addition, DNA polymerase alpha activity was highly stimulated on ADP-ribosylated polynucleosomes as compared to control ones, suggesting increased accessibility of DNA to enzymatic action. Because of the strong evidence implicating histone H1 in the maintenance of higher-ordered chromatin structures, the present study may provide a basis for the interpretation of the involvement of the histone H1 ADP-ribosylation reaction in DNA rearrangements during DNA repair, replication or gene expression.  相似文献   

10.
Polymers of ADP-ribose bind chromatosomal histones in solution and may play a role in chromatin accessibility in vivo. We have enzymatically synthesized a poly(ADP-ribose) affinity resin to further characterize binding of nuclear proteins to ADP-ribose polymers. NAD+- and (ADP-ribose)-derivatized agarose beads were recognized as polymer acceptors by the nuclear enzyme poly(ADP-ribose) polymerase. This polymerase elongated the existing ligands by successive addition of exogenously available ADP-ribose residues to form polymers covalently linked to the agarose beads. Poly(ADP-ribose) formation on the beads was dependent on incubation time and the mode of ligand attachment to the agarose. The resulting poly(ADP-ribose)-derivatized agarose beads possessed polymers which closely resembled those modifying the ADP-ribose polymerase by the automodification reaction. Fractionation of rat liver nuclear lysate over the poly(ADP-ribose) resin revealed a strong affinity of H1 for ADP-ribose polymers, thereby supporting a role for poly(ADP-ribose) in chromatin functions. Poly(ADP-ribose)-agarose beads are extremely stable and will be useful not only for affinity studies, but also for mechanistic studies involving polymer elongation and catabolism.  相似文献   

11.
Poly(ADP-ribosyl)ation is a posttranslational modification that alters the functions of the acceptor proteins and is catalyzed by the poly(ADP-ribose) polymerase (PARP) family of enzymes. Following DNA damage, activated poly(ADP-ribose) polymerase-1 (PARP-1) catalyzes the elongation and branching of poly(ADP-ribose) (pADPr) covalently attached to nuclear target proteins. Although the biological role of poly(ADP-ribosyl)ation has not yet been defined, it has been implicated in many important cellular processes such as DNA repair and replication, modulation of chromatin structure, and apoptosis. The transient nature and modulation of poly(ADP-ribosyl)ation depend on the activity of a unique cytoplasmic enzyme called poly(ADP-ribose) glycohydrolase which hydrolyzes pADPr bound to acceptor proteins in free ADP-ribose residues. While the PARP homologues have been recently reviewed, there are relatively scarce data about PARG in the literature. Here we summarize the latest advances in the PARG field, addressing the question of its putative nucleo-cytoplasmic shuttling that could enable the tight regulation of pADPr metabolism. This would contribute to the elucidation of the biological significance of poly(ADP-ribosyl)ation.  相似文献   

12.
13.
Poly(ADP-ribosyl)ation of nuclear proteins is catalyzed by poly(ADP-ribose) polymerase. This enzyme is involved in the regulation of basic cellular functions of DNA metabolism. DNA breaks induced by DNA-damaging agents trigger the activation of poly(ADP-ribose) polymerase increasing its endogenous level. This increase modifies the pattern of poly(ADP-ribosyl)ated chromatin proteins. In this paper we describe a procedure for the isolation of intact nuclei from rat liver to be used for the endogenous activity assay. Artifactual activation of the enzyme was avoided since a very low level of DNA-strand breaks occurs during the isolation of nuclei. We present a series of experiments which prove the ability of this procedure to detect increases in endogenous liver activity without modification of the total level. The application of this technique can be useful for a better understanding of the role of early changes in poly(ADP-ribose) polymerase level in physiological conditions and during exposure to DNA-damaging agents.  相似文献   

14.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

15.
Hydrolysis of protein-bound 32P-labelled poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase shows that there is differential accessibility of poly(ADP-ribosyl)ated proteins in chromatin to poly(ADP-ribose) glycohydrolase. The rapid hydrolysis of hyper(ADP-ribosyl)ated forms of histone H1 indicates the absence of an H1 dimer complex of histone molecules. When the pattern of hydrolysis of poly(ADP-ribosyl)ated histones was analyzed it was found that poly(ADP-ribose) attached to histone H2B is more resistant than the polymer attached to histone H1 or H2A or protein A24. Polymer hydrolysis of the acceptors, which had been labelled at high substrate concentrations (greater than or equal to 10 microM), indicate that the only high molecular weight acceptor protein is poly(ADP-ribose) polymerase and that little processing of the enzyme occurs. Finally, electron microscopic evidence shows that hyper(ADP-ribosyl)ated poly(ADP-ribose) polymerase, which is dissociated from its DNA-enzyme complex, binds again to DNA after poly(ADP-ribose) glycohydrolase action.  相似文献   

16.
Previous studies have demonstrated that an increase in poly(ADP-ribose) polymerase activity could be closely related to DNA replication during liver regeneration and to DNA repair synthesis in different experimental systems. This relationship was further investigated by studying the time course of endogenous and total poly(ADP-ribose) polymerase activity in cultured rat hepatocytes stimulated by epidermal growth factor. This mitogen has been shown to stimulate DNA synthesis in liver cells both in vivo and in vitro. A 6-fold increase in endogenous activity was observed early after epidermal growth factor addition, just before DNA synthesis. A subsequent 4-fold increment in total enzyme activity, concomitant with DNA synthesis, was detected. Orotic acid, which has recently shown mitoinhibitory effect, abolished the epidermal-growth-factor-induced increase in endogenous and total poly(ADP-ribose) polymerase activity, as well as DNA synthesis. On the contrary, 3-aminobenzamide inhibitor of poly(ADP-ribose) polymerase completely suppressed the endogenous activity but only partially modified the increase in total catalytic level and the overall pattern of thymidine incorporation. Taken together, these data indicate that, in cultured hepatocytes, the induction of DNA synthesis is supported by an increased poly(ADP-ribose) polymerase activity.  相似文献   

17.
18.
The interaction of benzamide with the isolated components of calf thymus poly(ADP-ribose) polymerase and with liver nuclei has been investigated. A benzamide-agarose affinity gel matrix was prepared by coupling o-aminobenzoic acid with Affi-Gel 10, followed by amidation. The benzamide-agarose matrix bound the DNA that is coenzymic with poly(ADP-ribose) polymerase; the matrix, however, did not bind the purified poly(ADP-ribose) polymerase protein. A highly radioactive derivative of benzamide, the 125I-labelled adduct of o-aminobenzamide and the Bolton-Hunter reagent, was prepared and its binding to liver nuclear DNA, calf thymus DNA and specific coenzymic DNA of poly(ADP-ribose) polymerase was compared. The binding of labelled benzamide to coenzymic DNA was several-fold higher than its binding to unfractionated calf thymus DNA. A DNA-related enzyme inhibitory site of benzamide was demonstrated in a reconstructed poly(ADP-ribose) polymerase system, made up from purified enzyme protein and varying concentrations of a synthetic octadeoxynucleotide that serves as coenzyme. As a model for benzamide binding to DNA, a crystalline complex of 9-ethyladenine and benzamide was prepared and its X-ray crystallographic structure was determined; this indicated a specific hydrogen bond between an amide hydrogen atom and N-3 of adenine. The benzamide also formed a hydrogen bond to another benzamide molecule. The aromatic ring of benzamide does not intercalate between ethyladenine molecules, but lies nearly perpendicular to the planes of stacking ethyladenine molecules in a manner reminiscent of the binding of ethidium bromide to polynucleotides. Thus we have identified DNA as a site of binding of benzamide; this binding is critically dependent on the nature of the DNA and is high for coenzymic DNA that is isolated with the purified enzyme as a tightly associated species. A possible model for such binding has been suggested from the structural analysis of a benzamide-ethyladenine complex.  相似文献   

19.
Isolated nuclei from HeLa cells can incorporate labeled ADP-ribose from NAD into an acid-precipitable product, poly(ADP-ribose). This reaction is stimulated by 4-6-fold by the addition of deoxyribonuclease I to the complete reaction mixture. If the nuclei are treated first with deoxyribonuclease I, no effect is seen; the stimulation is only apparent when the two enzymes deoxyribonuclease I and poly(ADP-ribose) polymerase, are operating at the same time. After making several minor modifications in the assay mixture, it was found that another endonuclease, micrococcal nuclease, can also stimulate the poly(ADP-ribose) polymerase activity of HeLa nuclei. A comparison of the two stimulatory effects indicated that the two endonucleases activated to the poly(ADP-ribose) polymerase activity of HeLa nuclei in the same way. Overall this evidence suggests that poly(ADP-ribose) polymerase may have a functional role in the process of DNA repair.  相似文献   

20.
The effect of poly(ADP-ribose) synthesis on chromatin structure was investigated by velocity sedimentation and electron microscopy. We demonstrate that locally relaxed regions can be generated within polynucleosome chains by the activity of their intrinsic poly(ADP-ribose)polymerase. This relaxation phenomenon is also shown to be NAD dependent and to be correlated with the formation of hyper(ADP-ribosyl)ated forms of histone H1. Evidence is also presented which suggests that hyper(ADP-ribosyl)ated histone H1 is neither released from the relaxed chromatin, nor does it seem to participate in polynucleosomal aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号