首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyruvate cycling was examined in the insect Manduca sexta L. (2-(13)C)pyruvate was injected into 5th instar larvae maintained on a semisynthetic high sucrose, low sucrose, or sucrose-free diet. Pyruvate cycling and gluconeogenesis were determined from the distribution of (13)C in blood metabolites, including trehalose, the blood sugar of insects, and alanine. Pyruvate cycling was evident from the (13)C enrichment of alanine C3, synthesized by transamination of pyruvate following carboxylation to oxaloacetate and cycling through phosphoenolpyruvate. Based on the relative (13)C enrichments of alanine C2 and C3, insects maintained on the high sucrose diet displayed higher levels of cycling than insects on the other diets. Insects on all the diets, when subsequently starved, displayed low levels of cycling. Gluconeogenesis was evident in insects on sucrose-free or low sucrose diets from the selective (13)C enrichment in trehalose. The level of gluconeogenesis relative to glycolysis was indicated by the (13)C enrichment of trehalose C6 and alanine C3, both enrichments metabolically derived in the same manner. Insects starved after maintenance on the sucrose-free or low sucrose diets remained glucogenic. Insects on the high sucrose diet were not glucogenic, and subsequent starvation did not induce gluconeogenesis. The results indicate that pyruvate kinase plays a critical role in regulating the gluconeogenic/glycolytic balance, and that inhibition of pyruvate kinase is a principal regulatory event during induction of de novo trehalose synthesis. Gluconeogenesis failed to maintain homeostatic levels of blood trehalose, supporting the conclusion that blood sugar level may be important for mediating nutrient intake. Possible factors involved in the regulation of gluconeogenesis in insects are discussed.  相似文献   

2.
The effects of macronutrient balance on nutrient intake and utilization were examined in Manduca sexta larvae parasitized by Cotesia congregata. Insects fed an artificial diet having constant total macronutrient, but with varied ratios of protein and carbohydrate, with altered diet consumption in response to excesses and deficiencies of the individual macronutrients. Bivariate plots of protein and carbohydrate consumption for non-parasitized larvae demonstrated a curvilinear relationship between points of nutrient intake for the various diets, and the larvae grew best on carbohydrate-biased diets. The relationship was linear for parasitized larvae with the growth uniform across diets. On protein-biased diets, the larvae regulated the nitrogen content, containing similar amounts of nitrogen regardless of consumption. Efficiency of nitrogen conversion in non-parasitized larvae was greatest on carbohydrate-biased diets, while nitrogen conversion by parasitized larvae was greatest with intermediate nutrient ratios. Accounting for carbohydrate consumption, the lipid content decreased as dietary carbohydrate increased, but parasitized larvae contained significantly less lipid. The total biomass of parasites developing in individual host larvae was positively correlated with host protein consumption, but the individual parasites were similar in size. Parasitism influences host nutrient consumption in a manner that achieves uniform host growth under diverse nutritional regimes, thereby constraining blood nutrient concentrations within limits suitable for parasite growth and development.  相似文献   

3.
Insect lysozyme from Manduca sexta (MS-lys) was overexpressed in E. coli and refolded to obtain active protein. Recombinant MS-lys presented a globular structure, with an alpha-helical content of 57% as assessed by circular dichroism spectroscopy. Light scattering studies showed that in solution MS-lys has a quasi-monodisperse size distribution, with a rod-like structure similar to nucleation clusters reported in egg lysozyme pre-crystallization stages. These results show that MS-lys is an excellent candidate for crystallization, folding and denaturation studies.  相似文献   

4.
Acetylcholine is the predominant excitatory transmitter in the insect central nervous system with many of its effects mediated by nicotinic acetylcholine receptors. These receptors are present at very high density and are structurally heterogeneous, although little is known about functional distinctions between them. An interesting system for examining these receptors is the larval stage of Manduca sexta, a nicotine-resistant tobacco-feeding insect. The nicotinic responses of cultured neurons were found to be blocked by mecamylamine and curare but highly resistant to alpha-bungarotoxin. The responses were also unaffected by the reducing agent dithiothreitol and the alkylating agent bromoacetylcholine suggesting that the alpha-subunit dicysteine agonist binding site is protected. To begin determining the functional roles of different subunits in these receptors, cultured neurons were treated with oligonucleotides based on the gene sequence of the alpha subunit, MARA1. Antisense DNA caused a significant downward shift in the amplitude distribution of nicotinic responses compared to sense or reverse antisense treatments. These treatments did not affect currents mediated by the application of GABA. The reduction in the nicotinic depolarization and inward currents did not affect the rate of current onset or recovery, suggesting that antisense MARA1 causes a partial block of all nicotinic responses in these neurons. These results demonstrate that receptor gene expression in insect neurons can be manipulated in a sequence-specific manner by antisense treatment and they provide evidence that MARA1 is important for normal nicotinic responses in Manduca.  相似文献   

5.
Paralytic peptide 1 (PP1) from a moth, Manduca sexta, is a 23-residue peptide (Glu-Asn-Phe-Ala-Gly-Gly-Cys-Ala-Thr-Gly-Tyr-Leu-Arg-Thr-Ala-Asp-Gly-Arg -Cys-Lys-Pro-Thr-Phe) that was first found to have paralytic activity when injected into M. sexta larvae. Recent studies demonstrated that PP1 also stimulated the spreading and aggregation of a blood cell type called plasmatocytes and inhibited bleeding from wounds. We determined the solution structure of PP1 by two-dimensional 1H NMR spectroscopy to begin to understand structural-functional relationships of this peptide. PP1 has an ordered structure, which is composed of a short antiparallel beta-sheet at residues Tyr11-Thr14 and Arg18-Pro21, three beta turns at residues Phe3-Gly6, Ala8-Tyr11 and Thr14-Gly17, and a half turn at the carboxyl-terminus (residues Lys20-Phe23). The well-defined secondary and tertiary structure was stabilized by hydrogen bonding and side-chain hydrophobic interactions. In comparison with two related insect peptides, whose structures have been solved recently, the amino-terminal region of PP1 is substantially more ordered. The short antiparallel beta-sheet of PP1 has a folding pattern similar to the carboxyl-terminal subdomain of epidermal growth factor (EGF). Therefore, PP1 may interact with EGF receptor-like molecules to trigger its different biological activities.  相似文献   

6.
Induction of gluconeogenesis is accelerated in larvae of the insect Manduca sexta L. parasitized by Cotesia congregata (Say), maintaining the concentration of the blood sugar trehalose, an important nutrient for parasite development. Investigation has demonstrated that when host larvae are offered a choice of diets with varying levels of sucrose and casein, parasitized insects consume a different balance of these nutrients, principally due to a decrease in protein consumption. The result is metabolic homeostasis, with normal unparasitized and parasitized larvae exhibiting similar levels of gluconeogenesis and blood sugar level. In the present study, normal unparasitized and parasitized larvae were maintained on individual chemically defined diets having the balance of protein and carbohydrate consumed by each when offered a dietary choice. Total dietary nutrient, the sum of carbohydrate and protein, was provided at six levels, composed of three pairs of diets. Each diet pair consisting of diets having equivalent overall nutrient ratios of 2:1 and 1:1 casein/sucrose. Host growth and diet consumption were significantly affected by dietary nutrient level and the magnitude of these effects was influenced by parasitism. Due to the effects of dietary nutrient level on diet consumption, none of the unparasitized and parasitized larvae within any of the three diet pairs consumed protein and carbohydrate at the levels predicted by the earlier choice experiments. Among insects on all of the diets, however, two groups of unparasitized and parasitized larvae consumed the expected levels of protein and carbohydrate. In each case, gluconeogenesis, as measured by 13C nuclear magnetic resonance spectroscopy (NMR) analysis of pyruvate cycling and trehalose synthesis from [2-13C]pyruvate, was evident in unparasitized and parasitized insects, confirming the conclusions of the earlier experiments. Generally, all larvae that consumed less than approximately 250 mg of sucrose over the 3-day feeding period, were gluconeogenic, regardless of diet. Differential carbohydrate consumption, therefore, was an important factor in inducing gluconeogenesis in both unparasitized and parasitized insects. The selective 13C enrichment in trehalose displayed by non-gluconeogenic larvae on some diets demonstrated trehalose formation from [2]pyruvate. The absence of net carbohydrate synthesis in these insects was likely due to an elevation of glycolysis. There was no significant effect of diet consumption or parasitism on blood trehalose level. Parasitized larvae displayed higher levels of gluconeogenesis than did unparasitized insects, a finding consistent with the conclusion that blood sugar is rapidly sequestered by developing parasites. The parasite burden, the total number of parasites developing within host larvae, as well as the number of parasites emerging from host larvae to complete development, was significantly less at the lowest dietary nutrient level, but was otherwise similar at all dietary nutrient levels. Moreover, the number of parasites that emerged increased with increasing diet consumption as reflected by host final weight.  相似文献   

7.
The purpose of this study is to look for structural correlates of the demonstrated nicotine-insensitivity of larval Manduca sexta CNS, an insensitivity which is only slightly perturbed by desheathing (a technique used to disrupt perineurial diffusion barriers). The general organization of the hornworm ganglion is found to conform to the conventional insect pattern, but the following points are noted and discussed in terms of their potential relationship to nicotine-insensitivity: the damage caused to perineurial cells by desheathing is extremely localized, with cells immediately adjacent to the torn region showing good ultrastructural integrity; ionic lanthanum does not gain access to the subperineurial extracellular space following desheathing; lanthanum penetrates the ganglion in the cytoplasm of tracheal cells damaged peripherally during desheathing, but is excluded from the extracellular space surrounding such tracheal cells; smooth endoplasmic reticulum is much in evidence in perineurial cells and tracheal cells, sites where it might be implicated in nicotine detoxification; individual basal perineurial cells appear to cover extensive regions of the ganglion, thereby limiting intercellular diffusion.  相似文献   

8.
During the transition from the last feeding larval stage to the pupal stage of the tobacco hornworm, Manduca sexta, significant changes occur in the properties of lipophorin, the major hemolymph lipoprotein. Within the first 24 h after cessation of feeding, the larval lipophorin (HDLp-L) is first converted to a higher density form (HDLp-W2) and then HDLp-W2 is converted to a lower density form (HDLp-W1). HDLp-W1 remains in the hemolymph until pupation, when another form, HDLp-P, with a density between HDLp-W1 and HDLp-L, is present. Although all the lipophorins contain identical apoproteins, they differ in lipid content and composition; the differences in density being primarily related to diacylglycerol content. The conversion of HDLp-L to HDLp-W1 is accompanied by a loss of hydrocarbon and uptake of carotenes. These latter changes in lipophorin composition reflect alterations in cuticular lipid composition. HDLp-L was radiolabeled in the apoproteins by injecting animals with 3H-amino acids early in the last larval stage. Subsequently HDLp-L was isolated at the end of the larval stage, HDLp-W2 and HDLp-W1 were isolated during the wandering stage, and HDLp-P was isolated after pupation. The specific activity of the apoproteins in the four lipophorins was not significantly different, suggesting that the observed alterations in lipophorin properties do not require synthesis of new apoproteins but result from retailoring the lipid composition of preexisting molecules. Examination of the hemolymph of individual animals during these transitions showed that only one species of lipoprotein was present, never a mixture of two or more species. These observations suggest that the lipoprotein conversions are precisely timed and that lipoprotein metabolism during larval development and pupation cannot be considered a static process. The unique finding of these studies was that synthesis of lipophorin apoproteins proceeds actively during the first part of the fifth instar but then ceases and does not recommence during the wandering or early pupal stages.  相似文献   

9.
The effect of octopamine on neuromuscular transmission was examined in developing and adult Manduca sexta. Intracellular recordings were made from the dorsal longitudinal muscle (DLM), superfused with solutions containing DL-octopamine or other amines. In untreated adult moths and pharate adults nearly ready to enclose (stage Day 19), stimulation of the motor nerve evokes a large excitatory junction potential (EJP), an active membrane response, and a twitch. In adults and Day 19 animals DL-octopamine (10(-7) to 10(-4)M) has no effect on the amplitude and rise-time of the electrical response in normal saline, but 10(-6) to 10(-4) M DL-octopamine increases the amplitude of the excitatory junction potential recorded in saline containing one-third the normal calcium concentration. Immature (Day 16) muscle, which normally produces only small EJPs following stimulation of its motor nerve, responds to 10(-6) to 10(-4) M DL-octopamine by an increase in the EJP above threshold for an active membrane response and a contraction. When the muscle has developed sufficiently to spike and contract in response to nerve stimulation in the absence of exogenous octopamine (Days 17 and 18), application of DL-octopamine increases the maximum rate at which the muscle contracts in response to each stimulus in a train (designated the maximum following frequency, MFF). The threshold dose for an effect on the MFF of Day 18 immature moths is less than 10(-10) M. At this stage 10(-8) M DL-octopamine increases the MFF four-fold. The effect on the MFF is dose-dependent over the range 10(-10) M to 10(-6) M. The biogenic amines DL-epinephrine, DL-norepinephrine, tyramine, DL-phenylethanolamine, 2-phenylethylamine, and dopamine, applied at concentrations of 10(-8) or 10(-4) M, do not change the MFF. Both DL-synephrine (10(-8) M) and serotonin (10(-7) M) mimic the action of 10(-10) M DL-octopamine on the MFF. The action of DL-octopamine (10(-7) M) is blocked by phentolamine (10(-4)M) but not by propranolol (10(-4)M). The octopamine content of hemolymph was determined with a radioenzymtic assay. The concentration of octopamine in the hemolymph increases 3.6-fold, from 5 X 10(-8) M on Day 18 (duration of adult development is 19 days) to 1.85 X 10(-7) M one day following eclosion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Odor-modulated upwind flight of the sphinx moth,Manduca sexta L.   总被引:1,自引:0,他引:1  
1. Male and female Manduca sexta flew upwind in response to the odor of female sex-pheromone gland extract or fresh tobacco leaf respectively, and generated very similar zigzagging tracks along the odor plume. 2. After loss of odor during flight, males and females alike: (1) first flew slower and steered their flight more across the wind, then (2) stopped moving upwind, and finally (3) regressed downwind. 3. Males flying upwind in a pheromone plume in wind of different velocities maintained their ground speed near a relatively constant 'preferred' value by increasing their air speed as the velocity of the wind increased, and also maintained the average angle of their resultant flight tracks with respect to the wind at a preferred value by steering a course more precisely due upwind. 4. The inter-turn duration and turn rate, two measures of the temporal aspects of the flight track, were maintained, on average, with remarkable consistency across all wind velocities and in both sexes. The inter-turn durations also decreased significantly as moths approached the odor source, suggesting modulation of the temporal pattern of turning by some feature of the odor plume. This temporal regularity of turning appears to be one of the most stereotyped features of odor-modulated flight in M. sexta.  相似文献   

11.
The present studies confirm that storage carbohydrate synthesis from [1-(13)C]glucose is elevated in Manduca sexta parasitized by Cotesia congregata, despite a decrease in the rate of metabolism of the labeled substrate. Further, the results demonstrate that a similar pattern of carbohydrate synthesis and glucose metabolism was induced in normal larvae by administration of the glycolytic inhibitor, iodoacetate. (13)C enrichment of C6 of trehalose and glycogen demonstrated randomization of the C1 label at the triose phosphate step of the glycolytic/gluconeogenic pathway and suggested that gluconeogenesis, that is, de novo carbohydrate formation, contributed to the synthesis of carbohydrate in both normal and parasitized insects. Accounting for differences in the (13)C enrichment in C1 of trehalose and glycogen due to direct labeling from [1-(13)C]glucose, the mean C6/C1 labeling ratios in trehalose and glycogen of parasitized larvae and insects treated with iodoacetate were greater than the mean ratio observed in normal larvae, suggesting a greater contribution of gluconeogenesis to trehalose labeling in parasitized insects. This conclusion was confirmed by additional investigations on the metabolism of [3-(13)C]alanine by normal and parasitized insects. The pattern of (13)C enrichment in hemolymph trehalose observed in normal larvae maintained on a low carbohydrate diet indicated a large contribution of gluconeogenesis, while gluconeogenesis contributed very little to trehalose labeling in normal insects maintained on a high carbohydrate diet. Parasitized insects maintained on a high or a low carbohydrate diet displayed a significantly greater contribution of gluconeogenesis to trehalose labeling than was observed in normal larvae maintained on the same diets. In conclusion, these investigations indicate that regulation over the utilization of dietary glucose for trehalose and glycogen synthesis as well as the dietary regulation of de novo carbohydrate synthesis were altered by parasitism.  相似文献   

12.
The hemolymph of last instar Manduca sexta larvae contains a protein factor that enhances ecdysone synthesis by prothoracic glands in vitro. The titer of the factor fluctuates during development in a pattern that suggests that it is regulated by juvenile hormone (JH). In untreated control larvae, the titer drops from 2.17 U ml?1 on day 1 to 0.27 U ml?1 on day 3. When larvae were treated with (7S)-hydroprene (a JH analog), the titer remained elevated (2.09 U ml?1 on day 3). JH I, however, was ineffective in preventing the precommitment drop in the titer of the factor. After pupal commitment, the titer of the factor increases in untreated larvae from 0.84 U ml?1 on day 5 to 1.62 U ml?1 on day 7. This increase was blocked when the sources of JH (the corpora allata) were removed on day 5 by head ligation. When head-ligated day 5 larvae were treated with either (7S)-hydroprene or JH I, the titer of the factor was driven to a level (1.88 U ml?1 and 2.05 U ml?1, respectively) that was not significantly different from that found in untreated day 7 larvae (1.62 U ml?1). The combined results indicate the titer of the hemolymph factor is regulated by JH.  相似文献   

13.
We examined growth rates, gas exchange patterns and energy metabolism of tobacco hornworm (Manduca sexta) larvae parasitized by the braconid wasp Cotesia congragata. Larvae parasitized at the beginning of the fourth-instar had reduced growth compared to unparasitized larvae of the same age and short-term differences in metabolism (measured as rates of CO(2) production, Vdot; CO(2)) were apparent almost immediately after wasp oviposition. However, over the growth period between parasitization and the last part of the fifth-instar, there was no significant difference between parasitized and unparasitized hosts as seen in the relationship between mass and Vdot; CO(2). One day prior to parasitoid emergence, host larvae stopped eating, ceased spontaneous locomotor activity and showed a dramatic decline in metabolism. The 60% decline of Vdot; CO(2) at this time is consistent with lack of specific dynamic action because the animals were not feeding. Gas exchange became highly cyclical on the day of parasitoid emergence, but the cause and significance of this phenomenon, which disappeared by the third day following emergence, are not clear. This pattern of cycling was not induced by starving nonparasitized larvae for 6days, nor by immobilizing nonparasitized larvae with tetrodotoxin. Ecdysteroid levels in the host's hemolymph significantly increased on the day when parasitoids completed their L2-L3 molt and began emerging, but not during the wasps' L1-L2 molt which occurred a few days earlier. Contrary to our initial expectation that hemolymph ecdysteroid titers might be linked to alterations in the host's metabolic rate, we observed no such correlation.  相似文献   

14.
A M Fox  S E Reynolds 《Peptides》1991,12(5):937-944
The hemolymph (blood) of the Lepidopteran insect Manduca sexta contains an endopeptidase that metabolizes the nonapeptide Manduca adipokinetic hormone. In contrast to the situation in other insects, where the major site of inactivation is the Malpighian tubules (excretory organs), in Manduca the capacity of the hemolymph to metabolize adipokinetic hormone is comparable to that of the Malpighian tubules. The hemolymph enzyme cleaves Manduca adipokinetic hormone (pGlu-Leu-Thr-Phe-Thr-Ser-Ser-Trp-Gly-NH2) to give the fragment pGlu-Leu-Thr-Phe-Thr. Other fragments were not positively identified. The enzyme is present in the plasma and not in hemocytes, and occurs at similar levels in the hemolymph of larvae, pupae and adults. The enzyme is inactivated by boiling, has a neutral pH optimum (7.0-7.5), and an estimated molecular weight of 66 kDa. The enzyme was strongly inhibited by inhibitors of metalloprotease activity (EGTA and 1,10-phenanthroline), but not by serine protease inhibitors. The enzyme was capable of metabolizing a number of AKH family peptides with varying sequences around the presumed site of cleavage. An accurate assessment of enzyme kinetics was not possible with the assay method used, but the enzyme was not saturated at a substrate concentration of 10 microM, and the value of Km must be at least 1 microM. It is possible that the enzyme may represent a low affinity system of peptide removal rather than the principal means of inactivation.  相似文献   

15.
Aminopeptidase N (APN; EC 3.4.11.2) is an exopeptidase that is attached to cell membranes by a hydrophobic amino-terminal stalk in vertebrates or a glycosylphosphatidylinositol (GPI) anchor in insects. In this study, we report the cloning, expression, and characterization of an aminopeptidase N from Manduca sexta midgut. The full-length aminopeptidase N cDNA (APN1a) encodes a 995-amino-acid protein. The predicted amino acid sequence differs by 8 amino acids from M. sexta APN1. These different amino acids do not modify any putative glycosylation or glycosylphosphatidylinositol anchor sites. The full-length cDNA was cloned into an expression plasmid, pHSP-HR5, and transiently expressed in an insect cell line derived from Spodoptera frugiperda (Sf21 cells). Immunoblot analysis with anti-APN antiserum showed that APN1a expressed in Sf21 cells is the same size (120 kDa) as APN found in midgut brush border membranes. After treatment with phosphatidylinositol-specific phospholipase C (PIPLC), anti-cross-reacting determinant antibody specific for PIPLC cleavage products recognized the expressed 120-kDa APN1a, but not endogenous Sf21 proteins, indicating that APN1a has an intact glycosylphosphatidylinositol anchor. These results are evidence that Sf21 cells synthesize few, if any, endogenous GPI-linked proteins. Immunofluorescence staining showed that the expressed APN1a was located on the surface of Sf21 cells.  相似文献   

16.
Invertebrates, including insects, are being developed as model systems for the study of bacterial virulence. However, we understand little of the interaction between bacteria and specific invertebrate tissues or the immune system. To establish an infection model for Photorhabdus, which is released directly into the insect blood system by its nematode symbiont, we document the number and location of recoverable bacteria found during infection of Manduca sexta. After injection into the insect larva, P. luminescens multiplies in both the midgut and haemolymph, only later colonizing the fat body and the remaining tissues of the cadaver. Bacteria persist by suppressing haemocyte-mediated phagocytosis and culture supernatants grown in vitro, as well as plasma from infected insects, suppress phagocytosis of P. luminescens. Using GFP-labelled bacteria, we show that colonization of the gut begins at the anterior of the midgut and proceeds posteriorly. Within the midgut, P. luminescens occupies a specific niche between the extracellular matrix and basal membrane (lamina) of the folded midgut epithelium. Here, the bacteria express the gut-active Toxin complex A (Tca) and an RTX-like metalloprotease PrtA. This close association of the bacteria with the gut, and the production of toxins and protease, triggers a massive programmed cell death of the midgut epithelium.  相似文献   

17.
The immune protein, scolexin, a bacteria-induced, larva-specific protein from Manduca sexta, was shown to exist in the hemolymph in two isoelectric forms designated herein as scolexin-1 and scolexin-2 (native Mr ~ 72 kd). These two charge isomers appeared to share the same amino acid composition. Scolexin is composed of two subunits (peptide Mr ~ 36 kd) that possess the same N-terminus. Scolexin-2 was subjected to glycosyl composition analysis, revealing the presence of galactose, glucose, mannose, xylose, and sialic acid residues. Hybridization of epidermal RNA with oligonucleotides deduced from the scolexin N-terminal sequence showed a continuous decline in mRNA following day 0 of the 5th larval instar. By employing in vitro protein labelling, it was found that organ cultures of the epidermis from immune larvae showed a greater ability over that of naive epidermal cultures to synthesize scolexin; these data reflected the inducible response seen in the hemolymph, and confirm other data indicating that the epidermis is an important site of scolexin biosynthesis. © 1995 Wiley-Liss, Inc.  相似文献   

18.
In their encounters with foreign intruders, the cells of the insect innate immune system, like those of the mammalian immune system, exhibit both humoral and cell-mediated responses. Some intruders can be dispatched by the humoral immune system alone, but many must be phagocytosed by individual hemocytes or encapsulated by interacting hemocytes. Surface proteins of hemocytes control the abrupt transition of hemocytes from resting, nonadherent cells to activated, adherent cells during these cell-mediated responses. Two of these surface proteins, an integrin and a tetraspanin, interact during this adhesive transition. As demonstrated with a hemocyte adhesion assay and a surface plasmon resonance assay, the large extracellular loop of tetraspanin D76 binds to a hemocyte-specific integrin of Manduca sexta. The interaction between the large extracellular loop domain and hemocyte-specific integrin is interrupted not only by a monoclonal antibody (MS13) that binds to a domain of beta-integrin known to be a ligand-binding site for cell adhesion but also by double-stranded beta-integrin RNA. Transfected S2 cells expressing tetraspanin mediate adhesion of hemocytes. A monoclonal antibody to tetraspanin D76 perturbs the cell-mediated immune response of encapsulation. These studies involving antibody blocking, RNA interference, and binding assays imply a trans interaction of integrin and tetraspanin on hemocyte surfaces.  相似文献   

19.
Enzymatic activity is dependent on temperature, although some proteins have evolved to retain activity at low temperatures at the expense of stability. Cold adapted enzymes are present in a variety of organisms and there is ample interest in their structure-function relationships. Lysozyme (E.C. 3.2.1.17) is one of the most studied enzymes due to its antibacterial activity against Gram positive bacteria and is also a cold adapted protein. In this work the characterization of lysozyme from the insect Manduca sexta and its activity at low temperatures is presented. Both M. sexta lysozymes natural and recombinant showed a higher content of alpha-helix secondary structure compared to that of hen egg white lysozyme and a higher specific enzymatic activity in the range of 5-30 degrees C. These results together with measured thermodynamic activation parameters support the designation of M. sexta lysozyme as a cold adapted enzyme. Therefore, the insect recombinant lysozyme is feasible as a model for structure-function studies for cold-adapted proteins.  相似文献   

20.
The microstructure of the feeding activity of tobacco hornworm caterpillars (Manduca sexta Johansson) on tomato leaf was examined by means of an automated cafeteria. In this device each activity of the caterpillar generates a characteristic slow electrical change which can be recorded. The apparatus is therefore both accurate and sensitive. Examination of the activity records indicated that larger animals ate more than smaller ones by increasing both bite frequency and the lengths of meals. Meal frequency did not increase. Correlations amongst a variety of measures indicated that there was regulation of feeding both between and within meals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号