首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PBMC from healthy adult individuals seropositive for measles virus (MV) were tested for their capacity to proliferate to UV-inactivated MV (UV-MV) or to autologous MV-infected EBV-transformed B cell lines (EBV-BC). MV-specific T cell responses were observed in 11 of 15 donors tested (stimulation index greater than 2), when optimal doses of UV-MV were used in proliferative assays. T cell clones were generated from PBMC of three donors responding to MV, by using either UV-MV or MV-infected autologous EBV-BC as APC. Stimulation with UV-MV generated exclusively CD3+ CD4+ CD8- MV-specific T cells, whereas after stimulation of PBMC with MV-infected EBV-BC, both CD3+ CD4+ CD8- and CD3+ CD4- CD8+ MV-specific T cell clones were obtained. Of 19 CD4+ T cell clones tested so far, 7 clones reacted specifically with purified fusion protein and 1 with purified hemagglutinin protein. Seven clones proliferated in response to the internal proteins of MV. Three clones reacted to whole virus but not to one of the purified proteins, whereas one clone seemed to recognize more than one polypeptide. Some of the T cell clones, generated from in vitro stimulation of PBMC with UV-MV, failed to recognize MV Ag when MV-infected EBV-BC were used as APC instead of UV-MV and PBMC. CD3+ CD4+ CD8- T cell clones recognized MV in association with HLA class II Ag (HLA-DQ or -DR), and most of them displayed CTL activity to autologous MV-infected EBV-BC. All CD4+ HLA class II-restricted CTL clones thus far tested were capable of assisting B lymphocytes for the production of MV-specific antibody. The CD4- CD8+ T cell clone MARO 1 recognized MV in association with HLA class I molecules and displayed cytotoxic activity toward MV-infected EBV-BC.  相似文献   

2.
Despite recent advances in our understanding of T cell antigen receptor structure, relatively little is known about the role of this receptor in MHC-restricted antigen recognition. To study this problem, we have developed a panel of ABA-Tyr-reactive, I-Ak-restricted T cell clones that differ in their ability to recognize structural analogs of ABA-Tyr. Three fine specificity groups have been defined. In each group, ABA-Tyr elicited the strongest response of any of the antigens tested. Group I clones responded to ABA-conjugated hydroxyphenyl-ethanol (ABA-HPE). Group II clones responded to ABA-conjugated hydroxyphenyl-methanol (ABA-HPM) but not to ABA-HPE, and group III clones responded only to ABA-Tyr. These studies show that differences as small as a single methylene group can dramatically affect fine specificity. Because these clones are all I-Ak-restricted, it was possible to correlate receptor serology with fine specificity. To this end, monoclonal anti-clonotypes were made against clone 16-F2 from group I and used to study the relationship between fine specificity and clonotype expression. A panel of 15 T cell clones studied with four anti-clonotype antibodies showed a strict correlation between clonotype expression and fine specificity. Taken together, these data suggest that the structure recognized by the anti-clonotype antibodies is a determinant of receptor fine specificity.  相似文献   

3.
Rabies virus-specific T cell clones isolated from a human vaccine recipient were studied for their fine specificity and genetic restriction using synthetic peptides of the viral Ag and mouse fibroblasts transfected with human MHC genes. Two clones were found to react with an epitope present in the rabies glycoprotein, which was presented by the HLA-DR7 molecule. Other T cell clones recognized synthetic epitopes corresponding to the rabies nucleoprotein in association with the HLA-DR7 or HLA-DQw3 molecule, and one clone responded to the viral nucleocapsid Ag in the presence of HLA-DPw4. T cell clones that exhibited different cross-reactivity patterns among several virus strains were found to recognize closely situated epitopes (within 15 amino acid residues), which were presented in the context of the same MHC molecule. The lack of recognition of a particular virus strain by a T cell clone was attributable in some cases to amino acid variations of the Ag that appear to affect the T cell's receptor for Ag specificity and not the ability of that epitope to associate with the corresponding MHC molecule. Comparisons of the T cell cross-reactivity patterns with various rabies and rabies-related viruses, the fine antigenic specificity, and MHC restriction may aid in understanding the role of individual amino acid variations among virus strains in the induction of cross-protective immunity.  相似文献   

4.
Human cytotoxic T lymphocytes specific for A/JAP/57 (H2N2) influenza virus were cloned from in vitro stimulations of peripheral blood lymphocytes. Analysis of the viral specificity in cytotoxic function revealed one clone that killed all type A influenza-infected targets, another clone that was specific for the hemagglutinin subtype of the immunizing influenza virus, and the third clone that demonstrated cytotoxicity restricted to the hemagglutinin of A/JAP/57 and A/JAP/62 (H2N2) and not other type A influenza strains with the H2N2 subtypes. The phenotype of these three clones was Leu 2?, Leu 3+, Leu 4+; MHC restriction of their cytotoxic function was mapped to HLA-DR by a panel of target cells as well as by inhibition of cytotoxicity with monoclonal antibodies. Proliferation of these clones, examined in a tritiated thymidine incorporation assay, was found to be driven by antigen in the absence of exogenous lymphokines. For all three clones antigen-dependent production and secretion of lymphokines with IL-2 activity was demonstrated. The antigen specificity of proliferation and factor production was shown to be identical to the pattern that each clone revealed in its cytotoxic function.  相似文献   

5.
Influenza virus stimulates a vigorous cytolytic T lymphocyte (CTL) response in the mouse that is directed to several virion polypeptides. This report examines the fine specificity of a panel of murine influenza-specific CTL clones restricted by MHC class I products of the H-2d haplotype. Ten of 22 A/JAPAN/305/57-specific CTL clones analyzed were directed to the A/JAPAN/305/57 hemagglutinin protein as detected by using target cells infected with a recombinant vaccinia virus containing hemagglutinin gene. Based on their fine specificity of hemagglutinin recognition, these clones defined four functional epitopes on the hemagglutinin. The remaining 12 cytolytic clones exhibited cross-reactivity for type A influenza viruses of the major human subtypes, and approximately 60% of these clones were directed to the nucleocapsid protein. KJ16-133 monoclonal antibody analysis of the utilization of the T cell receptor V beta 8 gene segment subfamily revealed that members of this V beta gene subfamily are expressed by both hemagglutinin- and nucleocapsid-specific MHC class I-restricted CTL (and by influenza-specific MHC class II-restricted T lymphocytes as well). These results suggest that CTL detect several distinct antigenic sites on the hemagglutinin. In addition, these results reveal no direct correlation between viral antigenic specificity and V beta gene expression by these virus-specific CLT clones.  相似文献   

6.
Murine fetal thymus from C57BL/6J (B6) and DBA/2J contains a cell population that suppresses CTL responses to alloantigens. This suppressor cell population was found to exist in high frequency in murine fetal thymus at the 14th day of gestation. The activity of this cell in the thymus declined rapidly with increasing time of gestation, and suppressor activity in the thymus was undetectable by the time of birth. On the other hand, suppressor activity could be detected in organ cultures of 14-day fetal thymus even after the organs were cultured for 14 or 21 days. Fetal thymocytes from B6 or DBA/2J mice were grown as long-term lines in interleukin 2 (IL 2)-containing medium. Clones of suppressor cells were derived from long-term cultures by micromanipulation. The clones had an average doubling time of 13 to 16 hr and were dependent on IL 2 for growth. The clones were 10- to 100-fold more efficient in suppressing CTL responses to alloantigens than day 15 fetal thymocytes. Analyses of cell surface molecules with the use of monoclonal antibodies and conventional anti-H-2 sera by radioactive binding assays showed that cloned suppressor cells from B6 fetal thymus were Thy-1 and Lyt-2+, and expressed little or no L3T4, Lyt-1, H-2K, H-2D, and class II molecules. The suppressor clones lacked the cytolytic activity of conventional CTL and also served as very poor target cells in CTL-mediated cytolysis. The suppressor function of the cloned cells was radiation-resistant, and this suppression could not be reversed by the addition of excess exogenous IL 2. The cloned cells suppressed CTL responses only when they were added within the first 48 hr of a 5-day culture period. Analyses of the antigen specificity of the suppressor cells showed that they suppressed CTL responses in a nonantigen-specific manner.  相似文献   

7.
Beadling C  Slifka MK 《Nature medicine》2006,12(10):1208-1212
Identification of pathogen-specific T cells has been greatly facilitated by the advent of synthetic peptide-major histocompatibility complex (MHC) tetramers. In many cases, however, specific epitopes have not been defined, necessitating detection methods that function independently of exact peptide-MHC specificity. Lymphocytes acquire surface proteins from antigen-presenting cells (APCs), and we have exploited this phenomenon to develop the T-cell recognition of APCs by protein transfer (TRAP) assay. This method is based on biotinylation and streptavidin-fluorochrome labeling of APCs, followed by subsequent acquisition of this label by antigen-specific T cells. The TRAP procedure detects MHC class I-restricted T cells regardless of their cytokine profiles or peptide-MHC affinities, and provides a versatile tool for monitoring the phenomenon of APC membrane acquisition by antigen-specific T cells.  相似文献   

8.
We explored antigenic differences between guinea pig (GP)-basic protein (BP), rat (Rt)-BP, and respective peptides from the encephalitogenic region for Lewis rats by comparing the fine specificity of T lymphocyte lines and clones selected from animals primed with these Ag. Encephalitogenic T cell lines specific for GP-BP or Rt-BP predictably recognized the corresponding 72-89 and to a lesser degree the 72-84 (S55S) amino acid sequence. T cell lines selected from rats primed with GP-S55S responded preferentially to GP-S55S compared to other peptides. A T cell line raised to Rt-S55S, however, initially recognized the S55S and S72-89 peptides but were nearly unresponsive to the intact GP-BP or Rt-BP. T cell clones selected from the Rt-S55S line at that point had two distinct patterns of response: clones that recognized both of the BP and the S55S peptides adoptively transferred delayed-type hypersensitivity and experimental autoimmune encephalomyelitis. These clones also recognized residues 69-81 (S67) but not peptide S75-89. In contrast, T cell clones that responded only to synthetic peptides GP-S55S and Rt-S55S but not to the parent BP adoptively transferred delayed-type hypersensitivity but not disease in Lewis rats. The same clones failed to respond to either the S67 or the S75-89 sequences. These results demonstrate that the encephalitogenic Rt-S55S sequence houses a minimum of two T cell epitopes with differing specificities and functions. One epitope is immuno-dominant and resembles the encephalitogenic region of the intact BP molecule. The second non-encephalitogenic epitope is restricted to the S55S sequences and is not shared by the parent BP, the S67, or the S75-89 sequences. Both types of Rt-S55S-specific clones differ in fine specificity from encephalitogenic clones selected from GP-BP immunized rats, thus indicating that uniformity of T cell recognition of the encephalitogenic epitope is not an absolute condition for T cells to be encephalitogenic.  相似文献   

9.
Mimicry between streptococcal M protein and cardiac myosin is important in the pathogenesis of rheumatic heart disease. M protein-specific human T cell clones derived from rheumatic carditis were cross-reactive with human cardiac myosin, and laminin, a valve protein. Among the 11 CD4(+) and CD8(+) cross-reactive T cell clones, at least 6 different reactivity patterns were distinguished, suggesting different degrees of cross-reactivity and a very diverse T cell repertoire. The latter was confirmed by a heterogeneous Vbeta gene and CDR3 usage. HLA restriction and Th1 cytokine production in response to rM6 protein were preserved when the T cell clones were stimulated by human cardiac myosin or other alpha-helical proteins, such as tropomyosin and laminin. The cross-reactive human T cell clones proliferated to B2 and B3A, dominant peptide epitopes in the B repeat region of streptococcal M protein. In human cardiac myosin, epitopes were demonstrated in the S2 and light meromyosin regions. In our study, T cell mimicry was defined as recognition of structurally related Ags involved in disease and recognized by the same T cell. Mimicry in our study was related to alpha-helical coiled coil proteins which have a repetitive seven-aa residue periodicity that maintains alpha-helical structure and thus creates a high number of degenerate possibilities for recognition by T cells. The study of human T cell clones from rheumatic heart disease revealed potential sites of T cell mimicry between streptococcal M protein and human cardiac myosin and represents some of the most well-defined T cell mimicry in human autoimmune disease.  相似文献   

10.
The specificity of T cell factors produced in presence of synthetic polypeptide antigens was studied. Factors prepared with either one of the three antigens: poly(Tyr,Glu)-poly(DLALa)--poly(Lys), (T,G)-A--L, poly(Phe,Glu)-poly(DLALa)--poly(Lys), (Phe,G)-A--L, and poly(His,Glu)-poly(DLALa)--poly(Lys), (H,G)-A--L, successfully cooperated with B cells for antibody production to the homologous as well as to the other two immunogens. Furthermore, the activity of a (T,G)-A--L-specific factor was removed after passage through immunoadsorbents built of Sepharose coupled to: (T,G)A--L, (Phe-G)-A--L and poly(Glu)-poly(DLAa)--poly(Lys), (G)-A--L, but not to poly (DLALa)--poly(LLys),A--L. No cross-reactivity was observed between (T,G)-A--L and poly(Tyr,Glu)-poly(Pro)--poly(Lys), (T,G)-Pro--L, at the level of T cell factors, as shown using the above approaches. These results lead to the conclusion that specificity of T cell factors, although not identical, is similar to that of antibodies.  相似文献   

11.
The activation of proliferative T lymphocytes normally involves the simultaneous recognition of a particular foreign antigen and a particular Ia molecule on the surface of antigen-presenting cells, the phenomenon of major histocompatibility complex (MHC) restriction. An analysis of T cell clones specific for pigeon cytochrome c, from B10.A and B10.S(9R) strains of mice, revealed the unusual finding that several of the clones could respond to antigen in association with Ia molecules from either strain. Using these cross-reactive clones, we performed experiments which demonstrated that both the Ia molecule and the T cell receptor contribute to the specificity of antigen recognition; however, MHC-linked low responsiveness to tuna cytochrome c (an immune response gene defect) could not be attributed solely to the efficacy with which the Ia molecules associated with the antigen. These results imply that antigen and Ia molecules are not recognized independently, but must interact at least during the process of T cell activation.  相似文献   

12.
The T cell antigen L-tyrosine-p-azobenzenearsonate is unique in being a simple determinant that can be presented in the context of both I-A and I-E. I-E-restricted T cell clones derived from B10.A(5R) mice were found to fall into three groups: Type I clones recognized antigen only in the context of syngeneic apcs, Type II clones recognized antigen with the same highly specific major histocompatibility complex restriction but in addition proliferated in response to allogeneic stimuli; Type III clones were "degenerate" in their major histocompatibility complex-restricted recognition of antigen and proliferated when antigen-presenting cells bearing Eb beta Ek alpha (syngeneic), Ek beta Ek alpha, or Ed beta Ed alpha were used. These observations allow some conclusions to be drawn about sites on the I-E molecule that may be functionally significant in the presentation of this antigen. By using the B cell hybridoma LK35.2 as target cells, some of these T cell clones act as cytotoxic cells in the Class II-restricted manner predicted from the results of proliferative assays. Class II-restricted cytotoxicity can therefore be controlled by both I-A and I-E mouse Ir gene loci.  相似文献   

13.
Phenotypic and functional characterization of human T cell clones   总被引:8,自引:0,他引:8  
The capacity of human peripheral blood-derived T cell clones to carry out a variety of functions was examined. T cell clones were generated by stimulating individual peripheral blood T cells with PHA by a procedure that yielded a growing clone from a mean of greater than 92% of the cultured cells. A total of 65 T cell clones (44 CD4+ and 21 CD8+) generated from two individual donors were examined for their functional capabilities. All T cell clones examined secreted IL-2, IFN-gamma, and lymphotoxin/tumor necrosis factor like activity when stimulated with immobilized mAb to the CD3 complex (64.1). When 54 additional T cell clones from a third donor were analyzed, all were found to produce IL-2. Upon activation with immobilized 64.1, all CD4+ clones and 91% of the CD8+ clones induced the generation of Ig-secreting cells from purified B cells. The CD8+ clones that did not serve as Th cells alone were able to augment the capacity of fresh CD4+ cells to generate Ig-secreting cells. Each of these clones was also found to effect MHC-unrestricted cytotoxicity upon activation with immobilized 64.1. The CD8+ clones were somewhat more effective killers than CD4+ clones, although there was considerable overlap. A total of 18 clones was analyzed for TCR beta-chain gene rearrangement. Of the clones exhibiting rearrangements of the beta-chain gene, 94% were found to have a single rearrangement pattern. Finally, the detailed phenotype of 15 (11 CD4+ and 4 CD8+) of these clones was examined. Variable numbers of cells of each of the clones expressed Ag identified by mAb 4B4 (CD29), Leu 8, Leu 15 (CD11b), and NKH1. Moreover, cells of 6 of 11 CD4+ clones and 4 of 4 CD8+ clones also expressed CD45R in addition to CD29; expression of CD45R and CD29 varied with the activation status of the clone. The current data demonstrate that nearly all of the T cell clones were able to accomplish each of the functions examined regardless of the surface phenotype. Inasmuch as the clones were generated using a technique that expanded more than 92% of the circulating T cells, the data imply that the progeny of the vast majority of T cells may have the inherent capacity to exert a wide array of functional activities.  相似文献   

14.
Summary We compared inversions of chromosome 14 in an ataxia telangiectasia clone and in a malignant T cell line (SUPT1). The R-banding chromosome analysis showed a clear difference between the distal breakpoint of the two inversions. Fine mapping of the distal breakpoint in the ataxia telangiectasia inv(14) was performed by in situ hybridization. We conclude that this breakpoint is centromeric to the immunoglobulin heavy chain locus and to the D14S1 anonymous locus. Our results favor the existence of an unknown oncogene in band 14q32.1.  相似文献   

15.
Summary To delimit the 14q32.1 recurrent breakpoint of ataxia telangiectasia clones, we performed an in situ hybridization study with various probes located on the 14q32 band. We thus mapped this breakpoint between the D14S1 and Pi loci. Furthermore, an interstitial duplication including D14S1 and a part of the IgH locus was demonstrated on a t(14;14) clone.  相似文献   

16.
By using a preparation of inactivated rabies virus, the blood mononuclear cells from five rabies vaccine recipients were stimulated in vitro in the presence of interleukin 2. T cell lines that displayed significant proliferative responses to whole rabies virus and to preparations of rabies glycoprotein and nucleocapsid were obtained from all the individuals. Other antigens, such as diphtheria and tetanus toxoids, influenza A virus, hepatitis B surface antigen, and serum albumin, failed to induce the proliferation of the T cell lines. One of these rabies-specific T cell lines was found to proliferate in response to rabies antigens only when the antigen-presenting cells expressed homologous HLA-DR antigens. The use of mouse monoclonal antibodies specific for human T cell surface markers revealed that most of the cells of these rabies-reactive lines were of the helper/inducer class of T lymphocytes. Stimulation of the T cell lines with the rabies antigens induced the production of interferon-gamma, a lymphokine with potent antiviral activity. Several T cell clones were isolated from two of these cell lines, and most of them appeared to be specific for the antigenic components of the viral nucleocapsid. Two T cell clones specific for the rabies glycoprotein were also isolated from one of these lymphocyte interleukin 2-dependent lines. Further in vitro studies with rabies-specific T cells could help us to understand in more depth the role of regulatory T cells in the human immune response to rabies virus.  相似文献   

17.
The role of the avidity of human CTL in the recognition and lysis of murine P815 cells expressing HLA-B27.1 Ag has been examined. Seven B27-specific alloreactive CTL clones were tested for their ability to lyse a B27.1+-P815 transfectant clone 1-7E, obtained after cotransfection of P815-HTR cells with HLA-B27.1 and human beta 2-microglobulin genes. The expression level of HLA-B27.1 on 1-7E cells was comparable to that on a human lymphoblastoid cell line, as determined by flow cytometry. Of the seven CTL clones used, CTL 1, 26, and 29 displayed the same fine specificity as established with a panel of target cells expressing six structurally different HLA-B27 variants. However, CTL 1 and 29 were of higher avidity than CTL 26, in that the lysis of human target cells by only this latter clone was inhibited by an anti-CD8 mAb. Based on the same criteria, CTL 2, 15, and 48 possessed the same or very similar fine specificity, but CTL 48 was of higher avidity than CTL 2 or 15. The seventh clone, CTL 40, was of a different fine specificity and its lysis of human target cells was also inhibited by the same anti-CD8 mAb. Only those clones whose lysis of human targets could not be inhibited by anti-CD8 antibody were able to lyse the 1-7E murine transfectants. These results indicate that, for human CTL clones with identical or very similar fine specificity, only those of higher avidity are able to lyse P815 murine cells expressing the HLA-B27 antigen. The lysis of HLA-B27.1+-murine transfectants by relevant clones was inhibited by anti-CD8 antibody. This result strongly suggests that the relative contribution of CD8 in stabilizing the interaction between human CTL and HLA-B27+-murine target cells is more significant than with human target cells.  相似文献   

18.
A bovine alloreactive cell population was subjected to complement-dependent lysis with monoclonal antibody (mAb) IL-A11. The original population and the population depleted of cells bearing the determinant recognized by mAb IL-A11 were cloned. Parent cultures and 21 clones were examined for cytolytic function and for expression of determinants recognized by mAb IL-A11 and two additional mAb, IL-A12 and IL-A17. Clones could be classified according to maximal achievable levels of cytolysis by using Theileria parva-infected bovine lymphoblastoid target cells. In this way, three groups were identified--one capable of high level cytolysis, one of intermediate levels, and one group comprising apparently noncytolytic clones. The clones in the first group reacted with mAb IL-A17; those in the second and third groups, with mAb IL-A11 and IL-A12. It was shown that cytotoxicity effected by IL-A17+ clones could be inhibited by this mAb and also by a mAb directed to MHC class I determinants on target cells. Conversely, cytotoxicity effected by IL-A11+/IL-A12+ clones could be inhibited by mAb IL-A11 and by a mAb directed to MHC class II determinants on target cells. The levels of expression of class I and class II determinants on target cells correlated with the levels of killing by clones of the IL-A17+ phenotype and clones of the IL-A11+/IL-A12+ phenotype, respectively. The results indicate that cytotoxic bovine T lymphocyte clones specific for class I MHC antigens and both cytotoxic and noncytotoxic clones specific for class II MHC antigens can be obtained. Further, their specificity for class I or class II antigens can be determined by phenotyping with mAb.  相似文献   

19.
Murine T cell lines responsive to the protozoan parasite Trypanosoma cruzi were generated in vitro by stimulating hyperimmune C57BL/6 lymphoid cells with trypomastigote stage antigen. A spleen-derived line designated ST1 and eight clones derived from ST1 were characterized. All lines bear the surface phenotype Thy-1.2+, Ly-1.2+, 2.2- and respond to T. cruzi antigen only in the presence of antigen-presenting cells matched at the I-A subregion of the H2 locus. Clonal specificity analyses indicated that these T. cruzi-selected T cells are species specific and recognize antigenic determinants that are expressed predominantly in the trypomastigote stage. On the basis of their distinct patterns of response to a panel of different T. cruzi strains, clones recognizing strain-specific, shared, or common determinants were identified. Functional studies indicated that ST1 and some but not all of the clones are capable of expressing antigen-specific T helper function in vitro and in vivo. In addition, co-incubation of T. cruzi-specific T cells with cultured T. cruzi-infected syngeneic macrophages led to the dose-dependent destruction of intracellular parasites. Most notably, ST1 and several of the cloned T. cruzi-specific T cell lines were able to passively protect syngeneic recipients from lethal T. cruzi challenge infection. Efforts to identify the parasite antigens recognized by these T cell lines, particularly the protective clones, are currently in progress.  相似文献   

20.
Excreted-secreted Ags (ESA) of Toxoplasma gondii (Tg) play an important role in the stimulation of the host immune system in both acute and chronic infections. To identify the parasite Ag(s) involved in the maintenance of T cell-mediated long term immunity, 40 ESA-specific T cell clones were derived from three chronically infected healthy subjects. All the clones were CD4+ and recognized both ESA and live tachyzoites in a HLA-DR-restricted manner. Conversely, CD4+ tachyzoite-specific T cell clones from the same subjects proliferated in response to ESA, pointing to shared immunodominant Ags between ESA and Tg tachyzoites. By T cell blot analysis using SDS-PAGE-fractionated parasite extracts, the following patterns of reactivity were detected. Of 25 clones, 6 recognized Tg fractions in the 24- to 28-kDa range and proliferated to purified GRA2, 5 reacted with Tg fractions in the 30- to 33-kDa range; and 4 of them proved to be specific for rSAg1. Although surface Ag (SAg1) is not a member of ESA, small amounts of this protein were present in ESA preparation by Western blot. Of 25 clones, 8 responded to Tg fractions in the 50- to 60-kDa range but not to the 55-kDa recombinant rhoptries-2 parasite Ag, and 6 did not react with any Tg fraction but proliferated in response to either ESA or total parasite extracts. In conclusion, CD4+ T cells specific for either ESA (GRA2) or SAg1 may be involved in the maintenance of long term immunity to Tg in healthy chronically infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号