首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endogenous Ca(2+)-inhibitable adenylyl cyclase type VI of C6-2B glioma cells is regulated only by capacitative Ca(2+) entry and not by a substantial elevation of [Ca(2+)](i) from either intracellular stores or via ionophore-mediated Ca(2+) entry (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149-1155; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9297-9305). The present studies explored the role of cholesterol-rich domains in maintaining this functional association. The cholesterol-binding agent, filipin, profoundly inhibited adenylyl cyclase activity. Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin did not affect forskolin-stimulated adenylyl cyclase activity and did not affect capacitative Ca(2+) entry. However, cholesterol depletion completely ablated the regulation of adenylyl cyclase by capacitative Ca(2+) entry. Repletion of cholesterol restored the sensitivity of adenylyl cyclase to capacitative Ca(2+) entry. Adenylyl cyclase catalytic activity and immunoreactivity were extracted into buoyant caveolar fractions with Triton X-100. The presence of adenylyl cyclase in such structures was eliminated by depletion of plasma membrane cholesterol. Altogether, these data lead us to conclude that adenylyl cyclase must occur in cholesterol-rich domains to be susceptible to regulation by capacitative Ca(2+) entry. These findings are the first indication of regulatory significance for the localization of adenylyl cyclase in caveolae.  相似文献   

2.
Epidermal growth factor (EGF) is a multifunctional factor known to influence proliferation and function of a variety of cells. The actions of EGF are mediated by EGF receptor tyrosine kinase pathways, including stimulation of phospholipase Cgamma and mobilization of intracellular Ca(2+) ([Ca(2+)](i)). Generally, agonist-mediated Ca(2+) mobilization involves both Ca(2+) release from internal stores and Ca(2+) influx activated by store depletion (i.e. capacitative or store-operated Ca(2+) influx). However, the role of capacitative Ca(2+) entry in EGF-mediated Ca(2+) mobilization is still largely unknown. In this study, we compared [Ca(2+)](i) signals elicited by EGF with those induced by agents (the muscarinic receptor agonist carbachol and thapsigargin (Tg)) known to activate capacitative Ca(2+) entry. Unlike carbachol and Tg, EGF (5 nm) elicited a transient [Ca(2+)](i) signal without a plateau phase in the presence of extracellular Ca(2+) and also failed to accelerate Mn(2+) entry. Repletion of extracellular Ca(2+) to cells stimulated with EGF in the absence of Ca(2+) elicited an increase in [Ca(2+)](i), indicating that EGF indeed stimulates Ca(2+) influx. However, the influx was activated at lower EGF concentrations than those required to stimulate Ca(2+) release. Interestingly, the phospholipase C inhibitor completely inhibited Ca(2+) release induced by both EGF and carbachol and also reduced Ca(2+) influx responsive to carbachol but had no effect on Ca(2+) influx induced by EGF. EGF-induced Ca(2+) influx was potentiated by low concentrations (<5 ng/ml) of oligomycin, a mitochondrial inhibitor that blocks capacitative Ca(2+) influx in other systems. Transient expression of the hTRPC3 protein enhanced Ca(2+) influx responsive to carbachol but did not increase EGF-activated Ca(2+) influx. Both EGF and carbachol depleted internal Ca(2+) stores. Our results demonstrate that EGF-induced Ca(2+) release from internal stores does not activate capacitative Ca(2+) influx. Rather, EGF stimulates Ca(2+) influx via a mechanism distinct from capacitative Ca(2+) influx induced by carbachol and Tg.  相似文献   

3.
Developmental changes in capacitative Ca(2+) entry and Ca(2+) release from intracellular stores were measured using fura-2 fluorescence method during the pregnancy period (day 3-;18) in mouse mammary epithelial cells. Ca(2+) release was identified with the transient intracellular Ca(2+) ([Ca(2+)](i)) increase induced by thapsigargin addition in a Ca(2+)-free solution. Capacitative Ca(2+) entry was measured by the transient [Ca(2+)](i) increase induced by re-addition of extracellular Ca(2+) after depletion of Ca(2+) stores by thapsigargin. The capacitative Ca(2+) entry was greatest at the early stage of pregnancy (i.e. day 3 of pregnancy) and decreased as pregnancy progressed, while Ca(2+) release remained unchanged throughout the developmental stages. These findings indicate that in contrast to Ca(2+) release, a close correlation exists between capacitative Ca(2+) entry and pregnancy-induced development in mammary epithelial cells.  相似文献   

4.
The effect of propranolol on Ca(2+) signalling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Propranolol increased cytosolic free Ca(2+) levels ([Ca(2+)](i)) in a concentration-dependent manner between 0.1 and 1 mM. The response was partly inhibited by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with 0.2 mM propranolol partly inhibited the [Ca(2+)](i) rise induced by 1 microM thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with thapsigargin abolished propranolol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment with 0.2 mM propranolol in Ca(2+)-free medium. Propranolol (0.2 mM) inhibited 25% of thapsigargin-induced capacitative Ca(2+) entry. Suppression of 1,4,5-trisphosphate (IP(3)) formation by 2 microM U73122, a phospholipase C inhibitor, did not alter 0.2 mM propranolol-induced internal Ca(2+) release. Propranolol (1 mM) also increased [Ca(2+)](i) in human neutrophils. Collectively, we have found that 0.2 mM propranolol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from thapsigargin-sensitive Ca(2+) stores in an IP(3)-independent manner, followed by Ca(2+) influx from external space. Independently, propranolol was able to inhibit thapsigargin-induced capacitative Ca(2+) entry.  相似文献   

5.
The oscillatory [Ca(2+)](i) signals typically seen following physiologically relevant stimulation of phospholipase C-linked receptors are associated with a receptor-activated entry of Ca(2+), which plays a critical role in driving the oscillations and influencing their frequency. We have recently shown that this receptor-activated entry of Ca(2+) does not conform to the widely accepted "capacitative" model and, instead, reflects the activity of a distinct, novel Ca(2+) entry pathway regulated by arachidonic acid (Shuttleworth, T. J., and Thompson, J. L. (1998) J. Biol. Chem. 273, 32636-32643). We now show that the generation of arachidonic acid under these conditions results from the activity of a type IV cytosolic phospholipase A(2) (cPLA(2)). Although cPLA(2) activation commonly involves a Ca(2+)-dependent translocation to the membrane, at these low agonist concentrations cPLA(2) activation was independent of increases in [Ca(2+)](i), and no detectable translocation to the membrane occurs. Nevertheless, stimulation of cPLA(2) activity was confined to the membrane fraction, where an increase in phosphorylation of the enzyme was observed. We suggest that, at the low agonist concentrations associated with oscillatory [Ca(2+)](i) signals, cPLA(2) activation involves an increased phosphorylation of a discrete pool of the total cellular cPLA(2) that is already localized within the membrane fraction at resting [Ca(2+)](i).  相似文献   

6.
In nonexcitable cells, we had previously established that Ca(2+)-sensitive adenylyl cyclases, whether expressed endogenously or heterologously, were regulated exclusively by capacitative Ca(2+) entry (Fagan, K. A., Mahey, R. and Cooper, D. M. F. (1996) J. Biol. Chem. 271, 12438-12444; Fagan, K. A., Mons, N., and Cooper, D. M. F. (1998) J. Biol. Chem. 273, 9297-9305). Relatively little is known about how these enzymes are regulated by Ca(2+) in excitable cells, where they predominate. Furthermore, no effort has been made to determine whether the prominent voltage-gated Ca(2+) entry, which typifies excitable cells, overwhelms the effect of any capacitative Ca(2+) entry that may occur. In the present study, we placed the Ca(2+)-stimulable, adenylyl cyclase type VIII in an adenovirus vector to optimize its expression in the pituitary-derived GH(4)C(1) cell line. In these cells, a modest degree of capacitative Ca(2+) entry could be discerned in the face of a dramatic voltage-gated Ca(2+) entry. Nevertheless, both modes of Ca(2+) entry were equally efficacious at stimulating adenylyl cyclase. A striking release of Ca(2+) from intracellular stores, triggered either by ionophore or thyrotrophin-releasing hormone, was incapable of stimulating the adenylyl cyclase. It thus appears as though the intimate colocalization of adenylyl cyclase with capacitative Ca(2+) entry channels is an intrinsic property of these molecules, regardless of whether they are expressed in excitable or nonexcitable cells.  相似文献   

7.
Transient receptor potential (Trp) channels have been implicated in mediating store- and receptor-activated Ca2+ influx. Different properties of this influx in various cell types may stem from the assembly of these Trp proteins into homo- or heterotetramers or association with other regulatory proteins. We examined the properties of endogenous capacitative Ca2+ entry in PHM1 immortalized human myometrial cells that express endogenous hTrpCs 1, 3, 4, 6, and 7 mRNA and in primary human myocytes. In PHM1 cells, activation of the oxytocin receptor or depletion of intracellular Ca2+ stores with the endoplasmic reticulum calcium pump-inhibitor thapsigargin induced capacitative Ca2+ entry, which was inhibited both by SKF 96365 and gadolinium (Gd3+). Whereas unstimulated cells did not exhibit Sr2+ entry, oxytocin and thapsigargin enhanced Sr2+ entry that was also inhibited by SKF 96365 and Gd3+. In contrast, Ba2+, a poor substrate for Ca2+ pumps, accumulated in these cells in the absence of the capacitative entry stimulus and also after oxytocin and thapsigargin treatment. Both types of entry were markedly decreased by SKF 96365 and Gd3+. The membrane-permeant derivative of diacylglycerol, 1-oleoyl-2-acetyl-sn-glycerol (OAG), elicited oscillatory increases in PHM1 intracellular Ca2+ that were dependent on extracellular Ca2+. These properties were also observed in primary human myocytes. Overexpression of hTrpC3 in PHM1 cells enhanced thapsigargin-, oxytocin-, and OAG-induced Ca2+ entry. These data are consistent with the expression of endogenous hTrpC activity in myometrium. Capacitative Ca2+ entry can potentially contribute to Ca2+ dynamics controlling uterine smooth muscle contractile activity.  相似文献   

8.
The presence of the capacitative Ca(2+) entry mechanism was investigated in porcine oocytes. In vitro-matured oocytes were treated with thapsigargin in Ca(2+)-free medium for 3 h to deplete intracellular calcium stores. After restoring extracellular calcium, a large calcium influx was measured by using the calcium indicator dye fura-2, indicating capacitative Ca(2+) entry. A similar divalent cation influx could also be detected with the Mn(2+)-quench technique after inositol 1,4,5-triphosphate-induced Ca(2+) release. In both cases, lanthanum, the Ca(2+) permeable channel inhibitor, completely blocked the influx caused by store depletion. Heterologous expression of Drosophila trp in porcine oocytes enhanced the thapsigargin-induced Ca(2+) influx. Polymerase chain reaction cloning using primers that were designed based on mouse and human trp sequences revealed that porcine oocytes contain a trp homologue. As in other cell types, the capacitative Ca(2+) entry mechanism might help in refilling the intracellular stores after the release of Ca(2+) from the stores. Further investigation is needed to determine whether the trp channel serves as the capacitative Ca(2+) entry pathway in porcine oocytes or is simply activated by the endogenous capacitative Ca(2+) entry mechanism and thus contributes to Ca(2+) influx.  相似文献   

9.
Bouron A 《FEBS letters》2000,470(3):269-272
Intracellular Ca(2+) ([Ca(2+)](i)) changes were measured in cell bodies of cultured rat hippocampal neurones with the fluorescent indicator Fluo-3. In the absence of external Ca(2+), the cholinergic agonist carbachol (200 microM) and the sarcoendoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (0.4 microM) both transiently elevated [Ca(2+)](i). A subsequent addition of Ca(2+) into the bathing medium caused a second [Ca(2+)](i) change which was blocked by lanthanum (50 microM). Taken together, these experiments indicate that stores depletion can activate a capacitative Ca(2+) entry pathway in cultured hippocampal neurones and further demonstrate the existence of such a Ca(2+) entry in excitable cells.  相似文献   

10.
Amperometry and microfluorimetry were employed to investigate the Ca(2+)-dependence of catecholamine release induced from PC12 cells by cholinergic agonists. Nicotine-evoked exocytosis was entirely dependent on extracellular Ca(2+) but was only partly blocked by Cd(2+), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion and rises of [Ca(2+)](i) observed in response to nicotine could be almost completely blocked by methyllycaconitine and alpha-bungarotoxin, indicating that such release was mediated by receptors composed of alpha7 nicotinic acetylcholine receptor subunits. Secretion and [Ca(2+)](i) rises could also be fully blocked by co-application of Cd(2+) and Zn(2+). Release evoked by muscarine was also fully dependent on extracellular Ca(2+). Muscarinic receptor activation stimulated release of Ca(2+) from a caffeine-sensitive intracellular store, and release from this store induced capacitative Ca(2+) entry that could be blocked by La(3+) and Zn(2+). This Ca(2+) entry pathway mediated all secretion evoked by muscarine. Thus, activation of acetylcholine receptors stimulated rises of [Ca(2+)](i) and exocytosis via Ca(2+) influx through voltage-gated Ca(2+) channels, alpha7 subunit-containing nicotinic acetylcholine receptors, and channels underlying capacitative Ca(2+) entry.  相似文献   

11.
The cardiac type Na(+)/Ca(2+) exchanger (NCX1) has been transiently expressed in Chinese hamster ovary cells, which do not contain an endogenous exchanger, together with aequorin chimeras that are targeted to different intracellular compartments to investigate intracellular Ca(2+) homeostasis. The expression of NCX decreased the endoplasmic reticulum Ca(2+) concentration, [Ca(2+)](er), in resting cells, showing that the exchanger was operative under these conditions. It induced a greater reduction in the height of the mitochondrial and cytosolic Ca(2+) transients in agonist-stimulated cells than would have been expected from the [Ca(2+)](er) decrease. It also had a major effect on the sub-plasma membrane Ca(2+) concentration, [Ca(2+)](pm): after a transient [Ca(2+)](pm) rise induced by the activation of capacitative Ca(2+) influx, [Ca(2+)](pm) settled to a value about 3-fold higher than in controls. The sustained [Ca(2+)](pm) increase after the transient was due to the operation of the exchanger, either directly by operating in the Ca(2+) entry mode, or indirectly by removing the Ca(2+) inhibition on the capacitative Ca(2+) influx channels.  相似文献   

12.
Little is known about the regulation of cytosolic calcium Ca(2+) levels ([Ca(2+)](i)) in breast cancer cells. We investigated the existence of capacitative calcium entry (CCE) in the tumorigenic cell line MCF-7 and its responsiveness to ATP. MCF-7 cells express purinergic receptors as well as estrogen receptors (ER). Depletion of calcium stores with thapsigargin (TG, 500 nM) or ATP (10 microM) in the absence of extracellular Ca(2+), resulted in a rapid and transient elevation in [Ca(2+)](i). After recovery of basal levels, Ca(2+) readmission (1.5 mM) to the medium increased Ca(2+) influx (twofold over basal), reflecting pre-activation of a CCE pathway. Cells pretreated with TG were unable to respond to ATP, thus indicating that the same Ca(2+) store is involved in their response. Moreover, IP(3)-dependent ATP-induced calcium mobilization and CCE were completely blocked using compound U-73122, an inhibitor of phospholipase C. Compound 2-APB (75 microM) and Gd(3+) (10 microM), antagonists of the CCE pathway, completely prevented ATP-stimulated capacitative Ca(2+) entry. CCE in MCF-7 cells was highly permeable to Mn(2+) and to the Ca(2+) surrogate Sr(2+). Mn(2+) entry sensitivity to Gd(3+) matched that of the Ca(2+) entry pathway. 17Beta-estradiol blocked ATP-induced CCE, but was without effect on TG-induced CCE. Besides, the estrogen blockade of the ATP-induced CCE was completely abolished by preincubation of the cells with an ER monoclonal antibody. ER alpha immunoreactivity could also be detected in a purified plasma membrane fraction of MCF-7 cells. These results represent the first evidence on the operation of a ATP-responsive CCE pathway in MCF-7 cells and also indicate that 17beta-estradiol interferes with this mechanism by acting at the cell surface level.  相似文献   

13.
The nitric oxide (NO) donor, GEA 3162, inhibited isoproterenol-induced cyclic AMP (cAMP) accumulation in a concentration- and time-dependent manner in mouse parotid acini; SIN-1 mimicked these effects. Inhibition of stimulated cAMP accumulation was independent of phosphodiesterase activity. GEA 3162 also inhibited forskolin-induced cAMP accumulation. Removal of extracellular Ca(2+), addition of La(3+), or the calmodulin (CaM) inhibitor, calmidazolium, did not prevent the NO-mediated response, and addition of the soluble guanylyl inhibitor, ODQ, did not reverse GEA 3162-induced inhibition of cAMP accumulation. GEA 3162 also inhibited adenylyl cyclase in vitro independently of Ca(2+)/CaM. Further studies revealed that the NO synthase (NOS) inhibitor, 7-nitroindazole (7-NI), reduced significantly thapsigargin-induced Ca(2+) release and capacitative Ca(2+) entry and reversed thapsigargin inhibition of the AC Type 5/6 isoform (AC5/6). Data suggest that NO produced endogenously has dual effects on cAMP accumulation in mouse parotid acini, an inhibitory effect on AC activity and a modulatory effect on capacitative Ca(2+) entry resulting in AC5/6 inhibition.  相似文献   

14.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the same cell. In this study, we have examined the interaction between capacitative calcium entry and arachidonic acid-activated calcium entry, which co-exist in HEK293 cells. These two pathways exhibit mutual antagonism. That is, capacitative calcium entry is potently inhibited by arachidonic acid, and arachidonic acid-activated entry is inhibited by the pre-activation of capacitative calcium entry with thapsigargin. In the latter case, the inhibition does not seem to result from a direct action of thapsigargin, inhibition of endoplasmic reticulum Ca(2+) pumps, depletion of Ca(2+) stores, or entry of Ca(2+) through capacitative calcium entry channels. Rather, it seems that a discrete step in the pathway signaling capacitative calcium entry interacts with and inhibits the arachidonic acid pathway. The findings reveal a novel process of mutual antagonism between two distinct calcium entry pathways. This mutual antagonism may provide an important protective mechanism for the cell, guarding against toxic Ca(2+) overload.  相似文献   

15.
Hong SJ 《Cellular signalling》2002,14(10):811-817
The effect of endothelin-1 (ET-1) on the intracellular free Ca(2+) ([Ca(2+)](i)) mobility in cultured H9c2 myocardiac ventricular cells was studied after loading with fura-2-AM. In Ca(2+)-containing buffer, ET-1 induced [Ca(2+)](i) rise from 10(-7) to 10(-9) M. ET-1 induced [Ca(2+)](i), which was composed of a first small peak and a secondary persistent plateau. In Ca(2+)-free buffer, pretreatment with 10(-7) M ET-1 inhibited the thapsigargin and carbonylcyanide m-chlorophenylhydrazone (CCCP)-induced [Ca(2+)](i) increase. Meanwhile, pretreatment with thapsigargin and CCCP also inhibited ET-1-induced [Ca(2+)](i) rise. In Ca(2+)-containing buffer, the ET(A) receptor antagonist (BQ123) completely abolished the secondary rising peak and plateau. Conversely, the ET(B) receptor antagonist (BQ788) completely inhibited the first small peak and secondary peak plateau. Nifedipine and La(3+) also abolished the 10(-7) M ET-1-induced [Ca(2+)](i) in the first rising peak. The internal Ca(2+) release induced by ET-1 was inhibited by U73122 (phospholipase C inhibitor), propranolol (phospholipase D inhibitor) and aristolochic acid (phospholipase A2 inhibitor). After incubation of 10(-7) M ET-1 in Ca(2+)-free buffer, the addition of 5 mM CaCl(2) increased Ca(2+) influx, implying that release of Ca(2+) from internal stores further induces capacitative Ca(2+) entry. Taken together, these results suggest that both ET(A) and ET(B) receptors are involved in ET-1-induced [Ca(2+)](i) rise in H9c2 myocardiac ventricular cells. Whereas ET(B) receptor seems to mediate the initial Ca(2+) influx via L-type Ca(2+) channel, ET(A) receptor appears to be involved in the subsequent Ca(2+) release from endoplasmic reticulum and mitochondria Ca(2+) stores.  相似文献   

16.
Ca(2+)-sensitive adenylyl cyclases may act as early integrators of the two major second messenger-signaling pathways mediated by Ca(2+) and cAMP. Ca(2+) stimulation of adenylyl cyclase type I (ACI) and adenylyl cyclase type VIII (ACVIII) is mediated by calmodulin and the site on these adenylyl cyclases that interacts with calmodulin has been defined. By contrast, the mechanism whereby Ca(2+) inhibits adenylyl cyclase type V (ACV) and adenylyl cyclase type VI (ACVI) is unknown. In this study, Ca(2+), Sr(2+), and Ba(2+) were compared to probe the involvement of E-F hand-like domains in both Ca(2+) stimulation and inhibition of ACVIII and ACVI, respectively. HEK 293 cells transfected with ACVIII cDNA and C6-2B glioma cells (where the endogenous adenylyl cyclases is predominantly ACVI) were used to compare the effects of these three cations in in vitro and in vivo measurements. The in vitro data identified two Ca(2+) regulatory sites for both ACVIII and ACVI. Strikingly different potency series for these cations at mediating high affinity stimulation and inhibition of ACVIII and ACVI, respectively, effectively rule out the possibility that calmodulin or proteins utilizing similar Ca(2+)-binding motifs mediate inhibition of ACVI. On the other hand, the low affinity inhibition that is common to both ACVIII and ACVI showed virtually identical potency profiles for the IIa cation series, indicating a common site of action. Remarkably, whereas Sr(2+) was rather ineffective at regulating these cyclases (particularly ACVI) in vitro, adequate concentrations accumulated in the vicinity of these enzymes as a consequence of capacitative cation entry to partially regulate both of these activities in vivo. This latter finding consolidates earlier observations that Ca(2+)-sensitive adenylyl cyclases detect and respond to capacitative cation entry rather than global cytosolic cation concentrations.  相似文献   

17.
Jan CR  Cheng JS  Roan CJ  Lee KC  Chen WC  Chou KJ  Tang KY  Wang JL 《Steroids》2001,66(6):505-510
The effect of the estrogen diethylstilbestrol (DES) on intracellular Ca(2+) concentrations ([Ca(2+)](i)) in Madin Darby canine kidney (MDCK) cells was investigated, using the fluorescent dye fura-2 as a Ca(2+) indicator. DES (10-50 microM) evoked [Ca(2+)](i) increases in a concentration-dependent manner. Extracellular Ca(2+) removal inhibited 45 +/- 5% of the Ca(2+) response. In Ca(2+)-free medium, pretreatment with 50 microM DES abolished the [Ca(2+)](i) increases induced by 2 microM carbonylcyanide m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) and 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor); and pretreatment with CCCP and thapsigargin partly inhibited DES-induced [Ca(2+)](i) signals. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with 50 microM DES in Ca(2+)-free medium, suggesting that DES may induce capacitative Ca(2+) entry. 17beta-Estradiol (2-20 microM) increased [Ca(2+)](i), but 100 microM diethylstilbestrol dipropionate had no effect. Pretreatment with the phospholipase C inhibitor U73122 (1 microM) to abolish inositol 1,4,5-trisphosphate formation inhibited 30% of DES-induced Ca(2+) release. DES (20 microM) also increased [Ca(2+)](i) in human normal hepatocytes and osteosarcoma cells. Cumulatively, this study shows that DES induced rapid and sustained [Ca(2+)](i) increases by releasing intracellular Ca(2+) and triggering extracellular Ca(2+) entry in renal tubular cells.  相似文献   

18.
Calcium influx is required for the mammalian sperm acrosome reaction (AR), an exocytotic event occurring in the sperm head prior to fertilization. We show here that thapsigargin, a highly specific inhibitor of the microsomal Ca(2+)-Mg(2+)-ATPase (Ca(2+) pump), can initiate acrosomal exocytosis in capacitated bovine and ram spermatozoa. Initiation of acrosomal exocytosis by thapsigargin requires an influx of Ca(2+), since incubation of cells in the absence of added Ca(2+) or in the presence of the calcium channel blocker, La(3+), completely inhibited thapsigargin-induced acrosomal exocytosis. ATP-Dependent calcium accumulation into nonmitochondrial stores was detected in permeabilized sperm in the presence of ATP and mitochondrial uncoupler. This activity was inhibited by thapsigargin. Thapsigargin elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)), and this increase was inhibited when extracellular Ca(2+) was chelated by EGTA, indicating that this rise in Ca(2+) is derived from the external medium. This rise of [Ca(2+)](i) took place first in the head and later in the midpiece of the spermatozoon. However, immunostaining using a polyclonal antibody directed against the purified inositol 1,4,5-tris-phosphate receptor (IP(3)-R) identified specific staining in the acrosome region, in the postacrosome, and along the tail, but not in the midpiece region. No staining in the acrosome region was observed in sperm without acrosome, indicating that the acrosome cap was stained in intact sperm. The presence of IP(3)-R in the anterior acrosomal region as well as the induction, by thapsigargin, of intracellular Ca(2+) elevation in the acrosomal region and acrosomal exocytosis, implicates the acrosome as a potential cellular Ca(2+) store. We suggest here that the cytosolic Ca(2+) is actively transported into the acrosome by an ATP-dependent, thapsigargin-sensitive Ca(2+) pump and that the accumulated Ca(2+) is released from the acrosome via an IP(3)-gated calcium channel. The ability of thapsigargin to increase [Ca(2+)](i) could be due to depletion of Ca(2+) in the acrosome, resulting in the opening of a capacitative calcium entry channel in the plasma membrane. The effect of thapsigargin on elevated [Ca(2+)](i) in capacitated cells was 2-fold higher than that in noncapacitated sperm, suggesting that the intracellular Ca pump is active during capacitation and that this pump may have a role in regulating [Ca(2+)](i) during capacitation and the AR.  相似文献   

19.
20.
In PC-Cl3 rat thyroid cell line, ATP and UTP provoked a transient increase in [Ca(2+)](i), followed by a lower sustained phase. Removal of extracellular Ca(2+) reduced the initial transient response and completely abolished the plateau phase. Thapsigargin (TG) caused a rapid rise in [Ca(2+)](i) and subsequent addition of ATP was without effect. The transitory activation of [Ca(2+)](i) was dose-dependently attenuated in cells pretreated with the specific inhibitor of phospholipase C (PLC), U73122. These data suggest that the ATP-stimulated increment of [Ca(2+)](i) required InsP(3) formation and binding to its specific receptors in Ca(2+) stores. Desensitisation was demonstrated with respect to the calcium response to ATP and UTP in Fura 2-loaded cells. Further studies were performed to investigate whether the effect of ATP on Ca(2+) entry into PC-Cl3 cells was via L-type voltage-dependent Ca(2+) channels (L-VDCC) and/or by the capacitative pathway. Nifedipine decreased ATP-induced increase on [Ca(2+)](i). Addition of 2 mM Ca(2+) induced a [Ca(2+)](i) rise after pretreatment of the cells with TG or with 100 microM ATP in Ca(2+)-free medium. These data indicate that Ca(2+) entry into PC-Cl3 stimulated with ATP occurs through both an L-VDCC and through a capacitative pathway. Using buffers with differing Na(+) concentrations, we found that the effects of ATP were dependent of extracellular Na(+), suggesting that a Na(+)/Ca(2+) exchange mechanism is also operative. These data suggest the existence, in PC-Cl3 cell line, of a P2Y purinergic receptor able to increase the [Ca(2+)](i) via PLC activation, Ca(2+) store depletion, capacitative Ca(2+) entry and L-VDCC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号