首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

2.
The co-immobilization of glucose oxidase (GOD) and hexokinase/glucose-6-phosphate dehydrogenase (HEX) in the silica hybrid sol-gel film for development of amperometric biosensors was investigated. The silica hybrid film fabricated by hydrolysis of the mixture of tetraethyl orthosilicate and 3-(trimethoxysiyl)propyl methacrylate possessed a three-dimension vesicle structure and good uniformity and conformability, and was ready for enzyme immobilization. The electrochemical and spectroscopic measurements showed that the silica hybrid sol-gel provided excellent matrice for the enzyme immobilization and that the immobilized enzyme retained its bioactivity effectively. The immobilized GOD could catalyze the oxidation of glucose, which could be used to determine glucose at +1.0 V without help of any mediator. The competition between GOD and HEX for the substrate glucose involving ATP as a co-substrate led to a decrease of the glucose response, which allowed us to develop an ATP sensor with a good stability. The fabricated silica hybrid sol-gel matrice offered a stage for further study of immobilization and electrochemistry of proteins.  相似文献   

3.
Flux through the glucose/glucose 6-phosphate cycle in cultured hepatocytes was measured with radiochemical techniques. Utilization of [2-3H]glucose was taken as a measure of glucokinase flux. Liberation of [14C]glucose from [U-14C]glycogen and from [U-14C]lactate, as well as the difference between the utilization of [2-3H]glucose and of [U-14C]glucose, were taken as measures of glucose-6-phosphatase flux. At constant 5 mM-glucose and 2 mM-lactate concentrations insulin increased glucokinase flux by 35%; it decreased glucose-6-phosphatase flux from glycogen by 50%, from lactate by 15% and reverse flux from external glucose by 65%, i.e. overall by 40%. Glucagon had essentially no effect on glucokinase flux; it enhanced glucose-6-phosphatase flux from glycogen by 700%, from lactate by 45% and reverse flux from external glucose by 20%, i.e. overall by 110%. At constant glucose concentrations cellular glucose 6-phosphate concentrations were essentially not altered by insulin, but were increased by glucagon by 230%. In conclusion, under basic conditions without added hormones the glucose/glucose 6-phosphate cycle showed only a minor net glucose uptake, of 0.03 mumol/min per g of hepatocytes; this flux was increased by insulin to a net glucose uptake of 0.21 mumol/min per g and reversed by glucagon to a net glucose release of 0.22 mumol/min per g. Since the glucose 6-phosphate concentrations after hormone treatment did not correlate with the glucose-6-phosphatase flux, it is suggested that the hormones influenced the enzyme activity directly.  相似文献   

4.
Acid phosphatase purified from maize scutellum, upon acylation with succinic anhydride, still shows negative co-operativity for the hydrolysis of glucose-6-phosphate at pH 5.4. This phenomenon is abolished by glucose, for both native and succinylated enzymes, through stimulation of the initial velocities at sub-optimal substrate concentrations. However, negative co-operativity for the enzymatic hydrolysis of p-nitrophenylphosphate at pH 5.4 is suppressed only at high concentrations of glucose. Furthermore, the hydrolysis of p-nitrophenylphosphate is noncompetitively inhibited (low affinity form of the enzyme molecule) by glucose, which suggests the existence of different substrate binding sites.  相似文献   

5.
Metabolism of glucose by unicellular blue-green algae   总被引:32,自引:0,他引:32  
Summary A facultative photo- and chemoheterotroph, the unicellular bluegreen alga Aphanocapsa 6714, dissimilates glucose with formation of CO2 as the only major product. A substantial fraction of the glucose consumed is assimilated and stored as polyglucose (probably glycogen). The oxidation of glucose proceeds through the pentose phosphate pathway. The first enzyme of this pathway, glucose-6-phosphate dehydrogenase, is partly inducible. In addition, the rate of glucose oxidation is controlled, at the level of glucose-6-phosphate dehydrogenase function, by the intracellular level of an intermediate of the Calvin cycle, ribulose-1,5-diphosphate, which is a specific allosteric inhibitor of this enzyme. As a consequence, the rate of glucose oxidation is greatly reduced by illumination, an effect reversed by the presence of DCMU, an inhibitor of photosystem II.Two obligate photoautotrophs, Synechococcus 6301 and Aphanocapsa 6308, produce CO2 from glucose at extremely low rates, although their levels of pentose pathway enzymes and of hexokinase are similar to those in Aphanocapsa 6714. Failure to grow with glucose appears to reflect the absence of an effective glucose permease. A general hypothesis concerning the primary pathways of carbon metabolism in blue-green algae is presented.Abbreviations A (U)DPG ADP-glucose or UDP-glucose - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - G(int.) intracellular glucose - F-6-P fructose-6-phosphate - 6-PG 6-phosphogluconate - Ru-5-P ribulose-5-phosphate - RUDP ribulose-1,5-diphosphate - PGA 3-phosphoglycerate - GAP glyceraldehyde-3-phosphate  相似文献   

6.
L de Meis  M A Grieco  A Galina 《FEBS letters》1992,308(2):197-201
During steady-state, the Pi released in the medium is derived from glucose-6-phosphate which continuously regenerates the ATP hydrolyzed. A membrane potential (delta psi) can be built up in submitochondrial particles using glucose-6-phosphate and hexokinase as an ATP-regenerating system. The energy derived from the membrane potential thus formed, can be used to promote the energy-dependent transhydrogenation from NADH to NADP+ and the uphill electron transfer from succinate to NAD+. In spite of the large differences in the energies of hydrolysis of ATP (delta G degrees = -7.0 to -9.0 kcal/mol) and of glucose-6-phosphate (delta G degrees = -2.5 kcal/mol), the same ratio between Pi production and either NADPH or NADH formation were measured regardless of whether millimolar concentrations of ATP or a mixture of ADP, glucose-6-phosphate and hexokinase were used. Rat liver mitochondria were able to accumulate Ca2+ when incubated in a medium containing hexokinase, ADP and glucose-6-phosphate. The different reaction measured with the use of glucose-6-phosphate and hexokinase were inhibited by glucose concentrations varying from 0.2 to 2 mM. Glucose shifts the equilibrium of the reaction towards glucose-6-phosphate formation thus leading to a decrease of the ATP concentration in the medium.  相似文献   

7.
Glucose is absolutely essential for the survival and function of the brain. In our current understanding, there is no endogenous glucose production in the brain, and it is totally dependent upon blood glucose. This glucose is generated between meals by the hydrolysis of glucose-6-phosphate (Glc-6-P) in the liver and the kidney. Recently, we reported a ubiquitously expressed Glc-6-P hydrolase, glucose-6-phosphatase-beta (Glc-6-Pase-beta), that can couple with the Glc-6-P transporter to hydrolyze Glc-6-P to glucose in the terminal stages of glycogenolysis and gluconeogenesis. Here we show that astrocytes, the main reservoir of brain glycogen, express both the Glc-6-Pase-beta and Glc-6-P transporter activities and that these activities can couple to form an active Glc-6-Pase complex, suggesting that astrocytes may provide an endogenous source of brain glucose.  相似文献   

8.
Hepatic glucose production (HGP) and glucose carbon recycling are traditionally estimated by the combined use of hydrogen and carbon-labeled glucose tracers. A single-isotope method such as that of Reichard et al. for the determination of HGP and glucose carbon recycling requires the determination of activities in different glucose carbons by chemical degradation. Since the 13C content in the glucose carbon skeleton can be determined from mass fragmentography, the use of 13C-labeled glucose and mass fragmentography can provide a single-isotope method for the quantification of the recycled carbons. Correction for the recycling makes it possible to determine the true HGP. In this study, (1-13C1)glucose and mass fragmentography were used for the determination of HGP and glucose carbon recycling in six colon cancer patients. Molar enrichment of the molecular ion (m/z 328 cluster of glucose aldonitrile pentaacetate) was used to determine 'uncorrected' HGP, which was 1.93 +/- 0.11 mg kg-1 min-1 (mean +/- s.e.m.). The difference in molar enrichment of the molecular ion C1-C6 (m/z 328) and the ion corresponding to C1-C4 fragment (m/z 242) was used to determine the contribution of recycled label carbon. After this correction, the 'corrected' HGP was 2.04 +/- 0.12 mg kg-1 min-1, which is not significantly different from the 'true' HGP rate of 2.05 +/- 0.15 mg kg-1 min-1 determined by using (6-3H)glucose. HGP determined from the enrichment of the molecular ion C1-C6 underestimates true HGP, as expected. The corrected HGPs correlate well with those from 6-3H method (r = 0.86, y = 1.06x - 0.12; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
11.
A method for determining the site and extent of deuterium (D) labeling of glucose by GC/MS and mass fragmentography was developed. Under chemical and electron impact ionization, ion clusters m/z 328, 242, 217, 212, and 187 of glucose aldonitrile pentaacetate and m/z 331 and 169 of pentaacetate derivative were produced. From the mass spectra of 13C- and D-labeled reference compounds, glucose carbon and hydrogen (C-H) positions included in these fragments were deduced to be m/z 328 = C1-C6, 2,3,4,5,6,6-H6; m/z 331 = C1-C6, 1,2,3,4,5,6,6-H7; m/z 169 = C1-C6, 1,3,4,5,6,6-H6; m/z 187 = C3-C6, 3,4,5,6,6-H5; m/z 212 = C1-C5, 2,3,4,5-H4; m/z 217 = C4-C6, 4,5,6,6-H4; and m/z 242 = C1-C4, 2,3,4-H3. After correction for isotope discrimination and deuterium-hydrogen exchange, the D enrichment of these fragments can be quantitated using selective ion monitoring, and the D enrichment of all C-H positions can be obtained by the difference in enrichment of the corresponding ion pairs. The validity of this approach was tested by examining D enrichment of known mixtures of 1-d1-, 2-d1-, 3-d1-, and 5,6,6-d3-glucose with unlabeled glucose and D enrichment of perdeuterated glucose using these fragments. This method was used to determine deuterium incorporation in C1 through C6 of blood glucose in fasted (24 h) rats infused with deuterated water. The distribution of deuterium was similar to that found by Postle and Bloxham (1980, Biochem. J. 192, 65-73). Approximately one deuterium atom was incorporated into C5 and only 75% deuterium atom was incorporated into C2. The enrichment of C2 and C6 of glucose relative to that of water indicated that 74 +/- 9% of plasma glucose was newly formed 4 h after the onset of deuterium infusion, and gluconeogenesis accounted for about 76 +/- 7% of the glucose 6-phosphate flux.  相似文献   

12.
Human diploid fibroblasts utilize both glucose and glutamine as energy sources. The utilization of glutamine by fibroblasts is regulated by glucose, and vice versa. This conclusion is supported by the following observations: (1) essentially identical growth rates were observed in Eagle's minimum essential medium (MEM)3 in which the glucose concentration was either 5.5 mM or was maintained between 25 and 40 micrometer, (2) the total glutamine utilization by fibroblasts increase at least 30% in medium with 25 micrometer to 70 micrometer glucose compared to medium with 5.5 mM glucose, while the rate of glutamine-1 or 5-14C oxidation to CO2 increased 5-fold as the glucose concentration was decreased to zero, (3) 2 mM glutamine inhibited glucose-6-14C oxidation by 88% and stimulated glucose-1-14C by 77% in log phase cells and (4) glutamine oxidation in normal medium contributed approximately 30% of the energy requirement of human diploid fibroblasts.  相似文献   

13.
Glycogen was quantified in rat adipocytes by isolation using conventional KOH digestion and ethanol precipitation, followed by hydrolysis and spectrophotometric assay of the glucose product. A concentration of 0.193+/-0.020 micromol glucosyl units/10(6)cells was recorded. When this procedure was modified by including a 4h incubation with glucose oxidase prior to glycogen hydrolysis, the glycogen concentration was found to be 0.055+/-0.008 micromol glucosyl units/10(6) cells. Therefore in adipocytes, conventional glycogen assays give substantial overestimates due to incomplete removal of glucose during glycogen isolation. Contaminant glucose can be scavenged in a simple manner by incubation with glucose oxidase prior to glycogen hydrolysis.  相似文献   

14.
Macrophages, when maintained in vitro, take up glucose from the medium and oxidize it to CO2. The rate of oxidation of glucose varies considerably, depending on the physical state of the cell preparation. Cells in suspension oxidize glucose at a level six-fold that of cells in monolayers. The differences cannot be attributed to change in the rats of transport of glucose. On the other hand, an increase in intracellular glycogen (about three-fold) and free glucose plus glucose-6-P (many-fold) was found in the cells prepared as monolayers. During subsequent incubation with glucose-14C, this could be the cause of an isotope dilution effect and could explain the lower production of 14CO2 by the adherent cells. Since oxidation of glucose-1-14C to 14CO2 is used by many investigators to indicate the functional state of macrophages, we suggest close attention be paid to the system used, i.e., monolayers vs. suspensions.  相似文献   

15.
A novel, thermostable adaptation of the coupled-enzyme assay for monitoring glucose concentrations was developed for an optimal temperature of 85 degrees C. This is the first report of a thermostable glucostat from a marine hyperthermophile. The continuous assay, using glucokinase (Glk) and glucose-6-phosphate dehydrogenase (Gpd) from Thermotoga maritima, demonstrated robust activity over a range of temperatures (75-90 degrees C) and pH values (6.8- 8.5). Purified glucokinase had a monomeric molecular mass of 33.8kDa while that of glucose-6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase) was 57.5kDa. The high-temperature assay provided a method for directly assaying the activity of another hyperthermophilic enzyme, 1,4-beta-D-glucan glucohydrolase (GghA) from Thermotoga neapolitana. To provide a benchmark for protein-engineering experiments involving GghA, a three-enzyme continuous assay (performed at 85 degrees C), linking wild-type GghA, Glk, and Gpd, measured glucose produced from GghA's hydrolysis of cellobiose, one of GghA's secondary substrates. The assay established the kinetic behavior of wild-type GghA toward cellobiose and was used to screen for changes in the catalytic efficiency of variant GghA(s) induced by random mutagenesis. The assay's development will allow high-throughput screening of other thermostable glucose-producing enzymes, including those applicable to commercial biomass conversion.  相似文献   

16.
With an enzyme degradative technique, isotope inequilibrium of glucose metabolites was demonstrated in intact cells and particlefree supernatants of Ehrlich ascites tumor using 1-14C-glucose as tracer. Inequilibrium was found between glucose and glucose-6-phosphate, glucose and fructose-6-phosphate, glucose and 6-phosphogluconate, while glucose-6-phosphate were found to be in near-equilibrium within the incubation time investigated. Glucose and lactate were found to be in near equilibrium after 8 min in intact cells. Calculations based on the equilibrium levels found, showed that these inequilibria could not be explained by the effects of the pentose cycle.  相似文献   

17.
L-Proline's glycogenic action is unlike that of other amino acids in that it produces effects beyond those explainable by a simple increase in osmolarity (Baquet, A., Hue, L., Meijer, A. J., van Woerkom, G. M., and Plomp, P. J. A. M. (1990) J. Biol. Chem. 265, 955-959). We postulate that this effect may relate to inhibition of hepatic glucose-6-P hydrolysis by a proline-derived metabolite. We tested this hypothesis with isolated livers from rats fasted 48 h which were perfused with L-proline or L-glutamine. Net glucose and net glycogen production and levels of glucose-6-P and certain other hepatic metabolites were measured. The data obtained support our hypothesis by demonstrating fundamental differences in the metabolic fates of proline and glutamine in the liver. Both pass through alpha-ketoglutarate in the initial stage of gluconeogenesis, but proline supports hepatic glycogen formation while glutamine does not. The concomitant increase in hepatic glucose-6-P and proline-associated glyconeogenesis suggests that inhibition of glucose-6-P hydrolysis by a proline-derived metabolite may divert glucose-6-P produced from proline from glucose production and to glycogen synthesis. This conclusion is supported by the effects of perfusions with and without proline (3-mercaptopicolinate present) on (a) glyconeogenesis and glucose formation from dihydroxyacetone, (b) net glucose uptake and glycogen formation with 30 mM glucose as substrate, and (c) glucose production from endogenous glycogen in perfused livers from fed rats.  相似文献   

18.
The liver endoplasmic reticulum glucose-6-phosphatase catalytic subunit (G6PC1) catalyses glucose 6-phosphate hydrolysis during gluconeogenesis and glycogenolysis. The highest glucose-6-phosphatase activities are found in the liver and the kidney; there have been many reports of glucose 6-phosphate hydrolysis in other tissues. We cloned a new G6Pase isoform (G6PC3) from human brain encoded by a six-exon gene (chromosome 17q21). G6PC3 protein was able to hydrolyse glucose 6-phosphate in transfected Chinese hamster ovary cells. The optimal pH for glucose 6-phosphate hydrolysis was lower and the K(m) higher relative to G6PC1. G6PC3 preferentially hydrolyzed other substrates including pNPP and 2-deoxy-glucose-6-phosphate compared to the liver enzyme.  相似文献   

19.
Pancreatic islets from ob/ob mice incubated with 3H2O and 5.5 mM glucose formed 3H-labeled glucose, 74 picoatoms incorporated/islet/h. Sixty-three percent of the 3H was bound to carbon 2 of the glucose. The amount of glucose-6-P dephosphorylated to glucose, determined from this incorporation, was 48 pmol/islet/h. Glucose utilization, measured by the formation of 3H2O from [5-3H]glucose, was 72 pmol/islet/h. The amount of glucose dephosphorylated was then about 40% of that phosphorylated. Thus, glucose-6-P is dephosphorylated to glucose to a significant extent by intact islets in vitro and presumably by the beta cells of the islets. The extent of this glucose cycling, i.e. glucose----glucose-6-P----glucose, may play a role in determining the extent of glucose-induced insulin secretion.  相似文献   

20.
S F Leong 《Life sciences》1991,48(6):561-567
Hexokinase and glucose-6-phosphate dehydrogenase activities were studied in brain regions after intraventricular injection of kainic acid. Hexokinase activity was decreased by 10-15% in various regions while glucose-6-phosphate dehydrogenase activity remained unaltered. Soluble hexokinase activity, which remained the smaller fraction of total hexokinase activity, showed slightly more dramatic decreases of 15-35% compared to normal activities in brain regions. This decrease of hexokinase activity in the cytosolic compartment could partly account for the kainate-induced decreases seen in glucose metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号