首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
The importance of intragenic and 3' flanking sequences in the control of the temporal, hormonal and tissue-specific expression of milk whey acidic protein (WAP) has been demonstrated in transgenic mice. Mouse lines carrying a 4.3 kb genomic clone containing the entire rat WAP gene minus 200 bp of the first intron with 0.949 kb of 5' and 1.4 kb of 3' flanking DNA were generated. In eight of nine independent lines of mice analyzed, WAP transgene expression was detected at levels ranging from 1% to 95% (average, 27%) of the endogenous gene. The transgene was expressed preferentially in the mammary gland. Although developmentally regulated during pregnancy and lactation, the temporal pattern of WAP transgene expression differed from the endogenous gene. A precocious increase in expression of the transgene was detected at 7 days of pregnancy, several days earlier in pregnancy than the major increase observed in endogenous mouse WAP mRNA. The rat WAP transgene was translated and secreted into the milk of transgenic mice at levels comparable to the endogenous mouse WAP. This is the first report of a gene that is negatively regulated in dissociated cell cultures as well as in transfected cells, yet is expressed efficiently in the correct multicellular environment of the transgenic mouse.  相似文献   

4.
In this study, we used the male germ cell-specific phosphoglycerate kinase 2 (Pgk2) promoter to generate Pgk2Cre transgenic mice to allow investigation of genes critically involved in meiosis. The Pgk2 promoter had been used previously to target transgene expression to spermatocytes and spermatids in several laboratories including ours. In several Cre targeting experiments using other promoters, ectopic Cre expression had been observed, but the timing and extent of this expression was not analyzed. We demonstrate that in adult mice the Pgk2Cre transgene is expressed specifically in spermatocytes and spermatids, as expected. However, in offspring from matings of Pgk2Cre mice and an H19loxP indicator strain, we discovered that recombination events had occurred in several, but not all, tissues to varying extents. The lacZ-loxP transgenic indicator strain was next used to uncover ectopic Cre expression even in single cells, which indicated that the Pgk2Cre transgene is expressed between days 11 and 15 during embryogenesis in several tissues and organs. Using an RT PCR assay we were unable to detect endogenous Pgk2 mRNA during embryogenesis or in adult tissues other than testis. In conclusion, the Pgk2 promoter is a valid choice for targeting gene expression to meiotic male germ cells, since transient ectopic expression is unlikely to have a discernable effect in most studies, but it may be inappropriate for utilization with Cre recombinase.  相似文献   

5.
To investigate the ability of 1.8 kb or 3.1 kb bovine beta-casein promoter sequences for the expression regulation of transgene in vivo, transgenic mice were produced with human type II collagen gene fused to 1.8 kb and 3.1 kb of bovine beta-casein promoter by DNA microinjection. Five and three transgenic founder mice were produced using transgene constructs with 1.8 kb and 3.1 kb of bovine beta-casein promoters respectively. Founder mice were outbred with the wild type to produce F1 and F2 progenies. Total RNAs were extracted from four tissues (mammary gland, liver, kidney, and muscle) of female F1 transgenic mice of each transgenic line following parturition. RT-PCR and Northern blot analysis revealed that the expression level of transgene was variable among the transgenic lines, but transgenic mice containing 1.8 kb of promoter sequences exhibited more leaky expression of transgene in other tissues compared to those with 3.1 kb promoter. Moreover, Western blot analysis of transgenic mouse milk showed that human type II collagen proteins secreted into the milk of lactating transgenic mice contained 1.8 kb and 3.1 kb of bovine beta-casein promoter. These results suggest that promoter sequences of 3.1 kb bovine beta-casein gene can be used for induction of mammary gland-specific expression of transgenes in transgenic animals.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Tissue-specific or regulated expression of transgenes is desirable in order to prevent pleiotropic side effects of putatively harmful transgene products as well as loss of energy resources due to unnecessary accumulation of transgene products. Epidermis-specific expression would be useful for many defense-related genes directed against attack by fungal pathogens that enter the plant body by direct penetration through the epidermis. In an approach to enhance resistance of wheat to the powdery mildew fungus Blumeria graminis f.sp. tritici, a novel epidermis-specific promoter was developed and used for expression of two defense-related genes. A 2.3 kb fragment of the wheat GstA1 promoter in combination with an intron-containing part of the wheat WIR1a gene was found to drive strong and constitutive transient expression in wheat epidermis. This promoter-intron combination was used for overexpression of oxalate oxidase 9f-2.8 and TaPERO peroxidase, two defense-related wheat genes expressed in inner leaf tissues. Expression studies of several transgenic lines by in situ oxalate-oxidase staining, RNA and protein blot analyses, as well as real-time PCR, demonstrated strong and constitutive transgene expression in the shoot epidermis. Transient as well as stable over-expression of the TaPERO peroxidase gene in wheat epidermis under the control of the GstA1i promoter resulted in enhanced resistance against Blumeria graminis f.sp. tritici, whereas oxalate-oxidase overexpression had no effect in either system. The data suggest that the wheat GstA1 promoter in combination with the WIR1a intron is useful for transgenic approaches to fungal disease resistance in cereals.  相似文献   

19.
alpha-Internexin is a 66 kDa neuronal intermediate filament protein found most abundantly in the neurons of the nervous systems during early development. To characterize the function of mouse alpha-internexin promoter, we designed two different expression constructs driven by 0.7 kb or 1.3 kb of mouse alpha-internexin 5'-flanking sequences; one was the enhanced green fluorescent protein (EGFP) reporter for monitoring specific expression in vitro, and the other was the cre for studying the functional DNA recombinase in transgenic mice. After introducing DNA constructs into non-neuronal 3T3 fibroblasts and a neuronal Neuro2A cell line by lipofectamine transfection, we observed that the expression of EGFP with 1.3 kb mouse alpha-internexin promoter was in a neuron-dominant manner. To establish a tissue-specific pattern in the nervous system, we generated a transgenic mouse line expressing Cre DNA recombinase under the control of 1.3 kb alpha-Internexin promoter. The activity of the Cre recombinase at postnatal day 1 was examined by mating the cre transgenic mice to ROSA26 reporter (R26R) mice with knock-in Cre-mediated recombination. Analyses of postnatal day 1 (P1) newborns showed that beta-galactosidase activity was detected in the peripheral nervous system (PNS), such as cranial nerves innervating the tongue and the skin as well as spinal nerves to the body trunk. Furthermore, X-gal-labeled dorsal root ganglionic (DRG) neurons showed positive for alpha-Internexin in cell bodies but negative in their spinal nerves. The motor neurons in the spinal cord did not exhibit any beta-galactosidase activity. Therefore, the cre transgene driven by mouse alpha-internexin promoter, described here, provides a useful animal model to specifically manipulate genes in the developing nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号