首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Persistent Mg2+ deficiency may interfere with restoration of normal tissue K+ levels. This study examined: a) the effects of chronic furosemide treatment on K+ of sartorius, aorta and ventricle of rats fed Mg2(+)-deficient (100 ppm) or Mg2(+)-sufficient (400 ppm) diet and deionized water; b) whether normal tissue K+ is restored by oral K+ or K+/Mg2+ supplementation with continued furosemide therapy. Levels of Mg2+ were also measured. Furosemide (20 mg/kg i.p.) decreased K+ in sartorius, aorta and ventricle by 5.5, 4.3 and 19.9 microEq/gm (p less than .05), respectively, in rats fed 100 ppm Mg2+ diet. Furosemide did not alter K+ levels in rats fed 400 ppm Mg2+ diet. K+ supplementation (1 mEq/kg for 7 days) restored K+ to normal in sartorius but the addition of Mg2+ supplementation was necessary to restore K+ levels to normal in ventricle and aorta. These data indicate that furosemide can decrease tissue K+ in rats on a Mg2(+)-deficient diet. This decrease can be reversed during diuretic administration by K+ supplementation in sartorius, or K+ plus Mg2+ supplementation in ventricle and aorta.  相似文献   

3.
1. The effects of essential fatty acids (EFAs) and zinc on the development and mineralization of bones were studied in young growing rats. 2. Female weaning rats were maintained on the diets deficient in EFAs, low in zinc (6 ppm) or both deficient in EFAs and low in zinc. 3. The low-zinc status accentuated signs of EFA deficiency including reduction of the growth rate and weights of bones and resulted in greater incidences of dental caries. 4. There were qualitative and quantitative differences in the fatty acid components of lipids extracted from the femur of the rats. 5. The overall effect was that eicosatrienoic (C20:3) and arachidonic (C20:4) acids were accumulated in EFA deficiency and low-zinc state respectively. 6. Bones of rats fed a low-zinc diet containing no EFAs were totally hypomineralized while those maintained on a diet that was either low in zinc or deficient in EFAs was partially hypomineralized. 7. Dietary zinc may have some roles to play in the biosynthesis of prostaglandins from EFAs and the process of bone mineralization.  相似文献   

4.
We investigated the effect of dietary magnesium (Mg) deficiency on the nutritive utilization and tissue distribution of iron (Fe). Wistar rats were fed an Mg-deficient diet (56 mg/kg) for 70 days. Absorbed Fe, Fe balance, number of the erythrocytes [red blood cells (RBC)] and leukocytes white blood cells (WBC)], hemoglobin (Hb), and Fe content were determined in samples of plasma, whole blood, skeletal muscle, heart, kidney, liver, spleen, femoral bone, and sternum obtained on experimental days 21, 35, and 70. The Mg-deficient diet significantly increased Fe absorption and Fe balance from week 5 until the end of the experimental period. This effect was accompanied by a significant decrease in the concentration of RBC and Hb from day 35, which caused the decrease in whole blood Fe seen on day 70. However, WBC were significantly increased from day 21 until the end of the experimental period. Mg deficiency significantly increased plasma and liver Fe at all three time points investigated. Spleen, heart, and kidney Fe were significantly increased only at the end of the study. However, on day 70, Fe concentration in the sternum had decreased significantly. No changes were found in skeletal muscle or femur Fe content. Mg deficiency led to increased intestinal absorption of Fe and decreased RBC counts, possibly as a result of increased fragility of the erythrocytes. Intestinal interactions between Fe and Mg, together with activation of erythropoiesis as a result of hemolysis, favored intestinal absorption of Fe. This situation gave rise to an increase in plasma Fe levels, which in turn favored Fe uptake and storage by different organs, especially the liver and spleen. However, despite the increased Fe content seen in the tissues of rats fed the Mg-deficient diet, these animals were unable to compensate for the hemolysis caused by this nutritional deficiency.  相似文献   

5.
To discover the details of the effects of magnesium (Mg) deficiency on kidney function, the course of changes in N-acetyl-beta-D-glucosaminidase (NAG) activity in the urine and in urinary albumin excretion were examined in rats fed a Mg-deficient diet. NAG activity in the urine and urinary albumin excretion in rats fed the Mg-deficient diet significantly increased from 7 d until the end of the feeding period. We suggest that Mg-deficient diet rapidly induces kidney function insufficiency.  相似文献   

6.
Many investigators have reported changes in mineral status with age but conflicting observations were done concerning mineral absorption. This study was conducted to clarify the effect of aging on intestinal absorption and status of minerals, using a stable isotope approach. To do so, 40 rats of different ages: 9, 22, 44, and 88 weeks were fed with a semi-purified diet for a total of 30 days. At the beginning of the 4th week, the rats received a stable isotope solution containing (44)Ca, (25)Mg, (67)Zn, and (65)Cu. Individual feces and urine were then collected during 4 consecutive days in order to measure stable isotopes by inductively coupled plasma/mass spectrometry (ICP/MS) and blood and tissues were sampled for mineral status determination. Intestinal absorption of (44)Ca and (67)Zn considerably decreased with age, whereas intestinal (25)Mg absorption decreased only moderately and intestinal (65)Cu absorption was unaffected. Plasma and bone calcium (Ca) were not modified with age whereas urinary Ca excretion considerably increased. Plasma and erythrocyte magnesium (Mg) levels were unaffected with age whereas urinary Mg excretion and Mg bone level decreased. Plasma zinc (Zn) level decreased and bone Zn level increased with age whereas red blood cell and liver Zn level and urinary Zn excretion remained unchanged. Plasma Cu level increased with age whereas liver and bone Cu levels and urinary Cu excretion remained unchanged. These results show that the effect of aging on the intestinal mineral absorption and status differ largely according to the mineral considered. Further studies are required under different nutritional conditions to explore the underlying mechanisms during aging and to adjust a better nutrition of the elderly.  相似文献   

7.
To test the effect of a high dietary calcium intake on blood pressure, we fed stroke-prone spontaneously hypertensive (SHR-SP) and Wistar-Kyoto rats (WKY) diets containing (a) 0.25% Ca/0.08% Mg, (b) 4.0% Ca/0.02% Mg, and (c) 4.0% Ca/0.08% mg, beginning at 6 weeks of age. SHR-SP and WKY rats receiving 4% Ca with the lower Mg content had lower blood pressures, hypomagnesemia, and hypomagnesuria, and grew poorly. SHR-SP receiving 4% Ca and the higher Mg diet had blood pressures no different from those of rats receiving the 0.25% Ca diet, in spite of having lower body weights. Rubidium flux studies in erythrocytes were not influenced by Ca or Mg in the diets. Plasma phosphate values were moderately reduced in rats receiving 4% Ca diets. Epinephrine and norepinephrine values were higher in SHR-SP than in WKY rats. Norepinephrine increased with stress in both strains, independent of diet. Epinephrine values were lower in SHR-SP receiving the 4% Ca diets and showed less of an increase with stress compared to SHR-SP receiving the 0.25% Ca diet. After 26 weeks of diets, SHR-SP and WKY rats were given 0.9% NaCl in their drinking water. NaCl increased blood pressure in SHR-SP irrespective of Ca content of the diet. These data suggest that a high Ca diet influences Mg homeostasis and adrenal medullary function in SHR-SP. Further, SHR-SP appear resistant to any blood pressure lowering effect of Ca irrespective of NaCl intake.  相似文献   

8.
The purpose of this study was threefold: 1. to determine the long-term effects of interactions between lactational zinc deficiency and gender on bone mineral composition in repleted rat offspring, 2. to determine the nutritional efficacy of the second of two commercially designed, modified Luecke diets (ML2) during the gestational and lactational stress, and 3. determine the ultratrace element contents of Ralston Rodent Laboratory Chow #5001. The ML2 basal diet, based on dextrose, sprayed egg white, and corn oil contained 0.420 μg Zn/g, was supplemented with Zn (as zinc acetate) at 0 (diet 0ML2) or 30 (diet 30ML2) μg/g, and was mixed and pelleted commercially. all rat dams were fed the 30ML2 diet ad libitum during gestation. Beginning at parturition, the dams were fed either the 1. 0ML2, 2. 30ML2 (food restricted), or 3. 30ML2 (ad libitum) diets. All pups were fed the 30ML2 diet ad libitum from 23 to 40 d of age. From d 40 to 150, all pups were fed Ralston Rodent Laboratory Chow. The 30ML2 diet was found to be nutritionally efficacious; litter size and pup growth were normal and pup mortality was only 1.2%. Pups (ZD) with access to the 0ML2 diet until 23 d of age and nursed by dams fed the 0ML2 diet, when compared to pups (PF) fed restricted amounts of the 30ML2 diet, exhibited increased mortality and decreased concentrations of tibial zinc but no change in growth. Inadequate zinc nutriture during infancy, despite postlactational zinc repletion, induced imbalances in adult bone mineral metabolism. Thus, at 150 d of age, the ZD pups exhibited increased levels of bone P and Mg and decreased concentrations of K as compared to the PF pups.  相似文献   

9.
Inflammatory response following acute magnesium deficiency in the rat   总被引:5,自引:0,他引:5  
The importance of inflammatory processes in the pathology of Mg deficiency has been recently reconsidered but the sequence of events leading to the inflammatory response remains unclear. Thus, the purpose of the present study was to characterize more precisely the acute phase response following Mg deficiency in the rat. Weaning male Wistar rats were pair-fed either a Mg-deficient or a control diet for either 4 or 8 days. The characteristic allergy-like crisis of Mg-deficient rats was accompanied by a blood leukocyte response and changes in leukocytes subpopulations. A significant increase in interleukin-6 (IL-6) plasma level was observed in Mg-deficient rats compared to rats fed a control diet. The inflammatory process was accompanied by an increase in plasma levels of acute phase proteins. The concentrations of alpha2-macroglobulin and alpha1-acid glycoprotein in the plasma of Mg-deficient rats were higher than in control rats. This was accompanied in the liver by an increase in the level of mRNA coding for these proteins. Moreover, Mg-deficient rats showed a significant increase in plasma fibrinogen and a significant decrease in albumin concentrations. Macrophages found in greater number in the peritoneal cavity of Mg-deficient rats were activated endogenously and appeared to be primed for superoxide production following phorbol myristate acetate stimulation. A high plasma level of IL-6 could be detected as early as day 4 for the Mg-deficient diet. Substance P does not appear to be the initiator of inflammation since IL-6 increase was observed without plasma elevation of this neuropeptide. The fact that the inflammatory response was an early consequence of Mg deficiency suggests that reduced extracellular Mg might be responsible for the activated state of immune cells.  相似文献   

10.
We investigated the effect of dietary calcium:phosphorus (Ca:P) ratio on bone mineralization and intestinal Ca absorption in ovariectomized (OVX) rat models of osteoporosis and sham-operated rats. Thirty 12-wk-old female Wistar rats were divided into three groups of OVX rats and three groups of sham rats. Thirty days after the adaptation period, OVX rats and sham rats were fed a diet formulated Ca:P, 1:0.5, 1:1 or 1:2 (each diet containing 0.5% Ca), respectively for 42 d. In both sham and OVX rats, serum osteocalcin, a marker of bone turnover, was increased by decreasing Ca:P ratio (1:2). In contrast, rats fed the Ca:P = 1:0.5 diet (dietary P restriction) suppressed the increased serum parathyroid hormone, osteocalcin and urinary deoxypyridinoline, and increased Ca absorption in both sham and OVX rats compared to the Ca:P = 1:1 and 1:2 diets. Especially, in OVX rats, the decreased bone mineral density of the fifth lumbar was also suppressed when rats were fed the Ca:P = 1:0.5 diet. These results indicated that the elevation of dietary Ca:P ratio may inhibit bone loss and increase intestinal Ca absorption in OVX rats.  相似文献   

11.
The body maintains Mg(2+) homeostasis by renal and intestinal (re)absorption. However, the molecular mechanisms that mediate transepithelial Mg(2+) transport are largely unknown. Transient receptor potential melastatin 6 (TRPM6) was recently identified and shown to function in active epithelial Mg(2+) transport in intestine and kidney. To define the relationship between Mg(2+) status and TRPM6 expression, we used two models of hypomagnesemia: 1) C57BL/6J mice fed a mildly or severely Mg(2+)-deficient diet, and 2) mice selected for either low (MgL) or high (MgH) erythrocyte and plasma Mg(2+) status. In addition, the mice were subjected to a severely Mg(2+)-deficient diet. Our results show that C57BL/6J mice fed a severely Mg(2+)-deficient diet developed hypomagnesemia and hypomagnesuria and showed increased TRPM6 expression in kidney and intestine. When fed a Mg(2+)-adequate diet, MgL mice presented hypomagnesemia and hypermagnesuria, and lower kidney and intestinal TRPM6 expression, compared with MgH mice. A severely Mg(2+)-deficient diet led to hypomagnesemia and hypomagnesuria in both strains. Furthermore, this diet induced kidney TRPM6 expression in MgL mice, but not in MgH mice. In conclusion, as shown in C57BL/6J mice, dietary Mg(2+)-restriction results in increased Mg(2+) (re)absorption, which is correlated with increased TRPM6 expression. In MgL and MgH mice, the inherited Mg(2+) status is linked to different TRPM6 expression. The MgL and MgH mice respond differently to a low-Mg(2+) diet with regard to TRPM6 expression in the kidney, consistent with genetic factors contributing to the regulation of cellular Mg(2+) levels. Further studies of these mice strains could improve our understanding of the genetics of Mg(2+) homeostasis.  相似文献   

12.
Magnesium (Mg) has been proposed to take part in biochemical dysregulation contributing to psychiatric disorders. The aims of this study was to estimate acute behavioural responses to clonidine (0.1 mg/kg i.p.), d-amphetamine (5 mg/kg, i.p), arecoline (15 mg/kg i.p), nicotine (6 mg/kg i.p.), apomorphine (1.5 mg/kg i.p.) and L-5-hydroxytryptophan (300 mg/kg i.p.) in rats fed with Mg-deprivated diet for 49 days and then treated with organic and inorganic Mg salts (50 mg Mg per kg) ether alone or in combination with pyridoxine (5 mg vitamin B6 per kg). In our study Mg-deficient rats were more sensitive to d-amphetamine-induced motor stereotypes compared with control rats; time of onset of the stereotypies insignificantly decreased by 14.89% and duration of the stereotypies significantly increased by 19.44% (320.36 +/- 19.90 vs. 268.23 +/- 8.17 minutes; p = 0.043). Mg deficiency did not modulate sensitivity to nicotine-induced seizure. The time between nicotine injection and emergence of clonic seizure (seizure latency) in the controls and Mg-deficient rats were 0.80 +/- 0.26 and 0.96 +/- 0.21 minutes respectively. Duration of the seizures in the controls and Mg-deficient rats were 64.93 +/- 7.20 and 79.32 +/- 8.13 minutes. In our study, Mg deficiency did not affect on clonidine- and apomorphine-induced hypothermia. Clonidine produced similar decreases in rectal temperature in controls and Mg-deficient group. In experiments using apomorphine, values of hypothermia were similar to those observed with clonidine. Mg deficiency antagonized 5-hydroxytryptophan-induced head-twitch response. The number of head twitches produced by 5-hydroxytryptophan was significantly (p = 0.49) decreased: twofold in magnesium-deficient rats (1.23 +/- 0.44 per minute) as compared with controls (2.42 +/- 0.52 per minute). Arecoline-induced tremor was comparably less expressed in Mg-deficient rats than in controls. The time between arecoline injection and time of onset of the tremor in the controls and Mg-deficient rats were 92.75 +/- 19.35 and 245.17 +/- 121.86 seconds respectively (p < or = 0.035). Duration of the tremors in the controls and Mg-deficient rats were 1175.58 +/- 127.87 and 703.83 +/- 89.33 seconds (p = 0.015). Magnesium salts (Mg chloride, Mg L-aspartate alone and in combination with B6) were administered through gastric tube during twenty days up to complete compensation oferythrocyte and plasma Mg levels in all experimental groups. In our study administration of Mg salts resulted in normalization of acute behavioural responses in Mg-deficient rats to d-amphetamine, arecoline, and L-5-hydroxytryptophan. Behavioural responses in rats treated with both Mg chloride and Mg L-aspartate in combinations with B6 were comparable with those observed in MagneB6 treatment.  相似文献   

13.
This experiment was designed to compare the effect of ingestion of a wheat flours on mineral status and bone characteristics in rats. White flour was tested either without further mineral supplementation or with Mg, Fe, Zn and Cu supplementation. The flour diets were compared to a control purified diet. Four groups of 10 male Wistar rats each were fed one of the experimental diets for 6 wk and mineral status and tissue retention as well as bone characteristics were determined. As expected, mineral intake, except for calcium, was significantly lesser in rats fed the white flour diet than in the other groups. The rats fed the white flour diet had the lowest food intake, weight gain, fecal excretion and intestinal fermentation. The most important result was that Mg and Fe status were drastically lower in rats fed the white flour diet than in those fed whole flour or control diets. The status of these both elements were significantly improved by the mineral supplementation of white flour. There were no major significant differences between mineral-supplemented white flour and whole flour groups in mineral status. Furthermore, bone mineral densities (total, metaphyseal and diphyseal) were significantly lower in rats fed white flour diet compared to the other diet groups, while no significant difference was observed between the mineral-supplemented white flour, whole flour or control diet groups. In conclusion, the present work shows clearly the importance of mineral-supplementation of white wheat flour to sustain an adequate intake of minerals. Our results indicate also that the whole wheat flour did not negatively alter mineral bioavailability, in comparison to mineral supplemented white flour. Clinical studies are still needed to confirm these rat results in human.  相似文献   

14.
OBJECTIVE: We examined the effect of vitamin D supplementation on bone growth in young rats fed a normal or low calcium diet. METHODS: Fifty female Sprague-Dawley rats, 6 weeks of age, were randomized by stratified weight method into five groups with 10 rats in each group: baseline control, 0.5% (normal) or 0.1% (low) calcium diet, and 0.5 or 0.1% calcium diet + vitamin D (25 microg/100 g, food intake). Duration of the experiment was 10 weeks. RESULTS: Vitamin D supplementation stimulated intestinal calcium absorption and increased urinary calcium excretion in rats fed a low or normal calcium diet. Vitamin D supplementation prevented the reduction in periosteal bone gain but enhanced enlargement of the marrow cavity and reduced the maturation-related cancellous bone gain in rats fed a low calcium diet, and increased the maturation-related cancellous and cortical bone gains in rats fed a normal calcium diet. CONCLUSION: This study shows the differential effects of vitamin D supplementation on born growth in young rats fed a normal or low calcium diet.  相似文献   

15.
The effect of conjugated linoleic acid (CLA) on postmenopausal bone metabolism has not been investigated. Therefore, forty-three adult ovariectomised (OVX) rats (8-9 rats per group) were fed either a control diet containing 40 g/kg soyabean oil (SBO diet) or the SBO diet with 0 (control OVX), 2.5, 5 or 10 g/kg of CLA (replacing soybean oil) for 9 weeks. A group of sham-operated (SH) rats were fed the SBO diet. OVX rats had significantly (P<0.05) lower femoral bone mineral density and macromineral concentration, and intestinal Ca absorption compared to SH rats. CLA supplementation had no effect on these parameters. Ex vivo PGE(2) biosynthesis by bone and urinary Pyr and Dpyr (markers of bone resorption) were significantly higher (P<0.001) in control OVX rats compared with SH rats, and were significantly (P<0.001) lowered by CLA supplementation with 5 and 10, but not 2.5 g/kg diet in OVX rats. In conclusion, CLA supplementation appeared to reduce the rate of bone resorption in adult OVX rats.  相似文献   

16.
Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.  相似文献   

17.
We investigated the effects of dietary iron deficiency on bone metabolism by measuring markers of bone turnover in rats. Twelve 3-week-old male Wistar-strain rats were fed a control diet or an iron-deficient diet for 4 weeks. Dietary iron deficiency decreased hemoglobin concentration and increased heart weight. Serum osteocalcin concentration, bone mineral content, bone mineral density, and mechanical strength of the femur were significantly lower in the iron-deficient group than in the control group. These results suggested that dietary iron deficiency affected bone, which might have been due to a decrease in bone formation in rats.  相似文献   

18.
The present study was undertaken to measure the activities of several hepatic enzymes of regulatory importance in the pathways of lipogenesis and gluconeogenesis in rats fed diets marginally deficient in copper (1.2 micrograms Cu/g of diet) and containing either fructose, glucose, or starch as the carbohydrate sources. Although all copper-deficient rats exhibited the characteristic signs of copper deficiency, they were more pronounced in rats fed the diet containing fructose. Except for the activity of phosphoenolpyruvate carboxykinase which was unaffected either by copper deficiency or by the type of dietary carbohydrate, the hepatic activities of glucose-6-phosphate dehydrogenase, malic enzyme, L-alpha-glycerophosphate dehydrogenase and fructose 1,6-diphosphatase were unaffected by copper deficiency but were affected by the type of carbohydrate in the diet. Fructose produced the greatest increase in enzymatic activities, whereas starch produced the least activity and glucose induced an intermediate effect. These results indicate that the deleterious effects of a fructose diet deficient in copper on biochemical and physiological indices could not be due to an immediate metabolite of fructose. However, the involvement of a subsequent metabolite of fructose in the mechanism of copper utilization and/or requirement cannot be excluded.  相似文献   

19.
Adequate dietary calcium (Ca) intake is essential for bone accretion, peak bone mass (PBM) attainment, bone quality and strength during the mammalian growth period. Severe Ca deficiency during growing age results in secondary hyperparathyroidism (SHPT) and poor bone quality and strength. However, the impact of moderate Ca deficiency during rats early growth period on bone health and the reversibility with supplementing calcium later in adult life remains unclear. Female Sprague-Dawley (SD) rats (postnatal 28th day, P28) were initiated either with a moderate calcium-deficient diet (MCD, 0.25% w/w Ca) or a control diet (0.8% w/w Ca, control group) till P70. Thereafter, MCD rats were continued either with MCD diet or supplemented with calcium diet (0.8% w/w Ca, calcium supplemented group, CaS) till P150. Another group (control rats) were fed 0.8% w/w Ca containing diet from P28 till P150.MCD group, as compared to the control group, had significantly reduced serum ionized Ca and procollagen type 1 N-terminal propeptide (P1NP) at P70 while no significant change was observed in serum corrected Ca, inorganic phosphate (P), alkaline phosphatase (ALP), 25-hydroxy vitamin D [25(OH)D], intact parathyroid hormone (iPTH), and urinary C-terminal telopeptide of collagen 1 (CTX-1), Ca, and P. Femoral and tibial metaphysis in MCD rats had significantly reduced linear growth, cortical and trabecular volumetric BMD (vBMD), trabecular microarchitecture (BV/TV%, trabecular thickness, separation and number, structural model index and connectivity density), cortical thickness, and bone stiffness despite the absence of secondary hyperparathyroidism (SHPT). Continued MCD at P70–P150 results in persistence of compromised bone strength while calcium supplementation (CaS group) improved all the parameters related to bone strength and microarchitecture. Our results indicate that uncorrected moderate/subclinical calcium deficiency in growing rats can result in poor bone quality and strength despite the absence of SHPT. This finding could have relevance in children with poor calcium intake in childhood and adolescence.  相似文献   

20.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号