首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of the SOS response by H2O2 was measured in Escherichia coli by means of a sfiA::lacZ operon fusion. The effects of mutations in genes involved in DNA repair or DNA metabolism on the SOS response were investigated. We found that in an uvrA mutant, H2O2 induced the SOS response at lower concentrations than in the uvr+ parent strain, indicating that some lesions induced by H2O2 may be repaired by the uvrABC-dependent excision repair system. A nth mutation, yielding deficiency in thymine glycol DNA glycosylase, had no detectable effect on SOS induction, indicating that thymine glycol, a DNA lesion expected to be induced by H2O2, does not participate detectably in the induction of the SOS response by this chemical under our conditions. H2O2 still induced the SOS response in a dnaC(Ts) uvrA double mutant under conditions in which no DNA replication proceeds, suggesting that this chemical induces DNA strand breaks. Induction of the SOS response by H2O2 was also assayed in various mutants affected in genes suspected to be important for protection against oxidative stress. Mutations in the catalase genes, katE and katG, had only minor effects. However, in an oxyR deletion mutant, in which the adaptative response to H2O2 does not occur, SOS induction occurred at much lower H2O2 concentrations than in the oxyR+ parent strain. These results indicate that some enzymes regulated by the oxyR gene are, under our conditions, more important than catalase for protection against the H2O2-induced DNA damages which trigger the SOS response.  相似文献   

2.
The induction of recA, umuC and sfiA genes by quercetin was studied in the presence and in the absence of S9 mix. The inducing activity of quercetin is higher for sfiA than for recA and umuC genes in the absence of S9 mix. The putative genotoxic metabolites of quercetin produced by S9 mix display different inducing activities of the three SOS genes as compared to quercetin. The induction of sfiA gene is decreased by the presence of S9 mix, whereas an opposite effect was observed concerning umuC and recA. These data suggest that the error-prone repair pathway participates in mutagenesis by quercetin and its metabolites. Moreover, the type of DNA damage exerted by quercetin seems to be determined by its metabolic fate. The importance of testing for the induction of other SOS genes, together with sfiA, in the study of SOS functions as a genotoxic index is emphasized.  相似文献   

3.
Interference between the oxidative and SOS responses in Escherichia coli was studied. The oxidative response involves both reactive oxygen scavenging system and DNA repair systems which are distinct from either the SOS or adaptive response to alkylating agents. The oxyR gene is a positive regulatory gene for the oxidative response and controls at least 9 proteins which are induced by treatment with H2O2. This gene is not a portion of the SOS regulon that involves at least 17 different genes in E. coli and controls the SOS response--another inducible and nonspecific repair activity. The SOS response was measured in E. coli PQ37 by means of a sfiA: :lacZ operon fusion according to "SOS Chromotest" in a completely automated system "Bioscreen C" (Labsystems, Finland). Our data have shown that: 1) H2O2 was a potent inducer of sfiA gene--one of the SOS genes; 2) there was strong negative effect of the oxidative response on the subsequent induction of the SOS response. In common with our previous findings it should be concluded that there is an interference between the SOS response--on the one hand, and the adaptive and oxidative responses--on the other. The nonspecific heat shock response is proposed to be a main key in these interferences.  相似文献   

4.
We have investigated the mechanisms of killing of Escherichia coli by HOCl by identifying protective functions. HOCl challenges were performed on cultures arrested in stationary phase and in exponential phase. Resistance to HOCl in both cases was largely mediated by genes involved in resistance to hydrogen peroxide (H2O2). In stationary phase, a mutation in rpoS, which controls the expression of starvation genes including those which protect against oxidative stress, renders the cells hypersensitive to killing by HOCl. RpoS-regulated genes responsible for this sensitivity were dps, which encodes a DNA-binding protein, and, to a lesser extent, katE and katG, encoding catalases; all three are involved in resistance to H2O2. In exponential phase, induction of the oxyR regulon, an adaptive response to H2O2, protected against HOCl exposure, and the oxyR2 constitutive mutant is more resistant than the wild-type strain. The genes involved in this oxyR-dependent resistance have not yet been identified, but they differ from those primarily involved in resistance to H2O2, including katG, ahp, and dps. Pretreatment with HOCl conferred resistance to H2O2 in an OxyR-independent manner, suggesting a specific adaptive response to HOCl. fur mutants, which have an intracellular iron overload, were more sensitive to HOCl, supporting the generation of hydroxyl radicals upon HOCl exposure via a Fenton-type reaction. Mutations in recombinational repair genes (recA or recB) increased sensitivity to HOCl, indicative of DNA strand breaks. Sensitivity was visible in the wild type only at concentrations above 0.6 mg/liter, but it was observed at much lower concentrations in dps recA mutants.  相似文献   

5.
OxyR controls H(2)O(2)-dependent gene expression in Pseudomonas aeruginosa. Without OxyR, diluted (<10(7)/ml) organisms are easily killed by micromolar H(2)O(2). The goal of this study was to define proteins that contribute to oxyR mutant survival in the presence of H(2)O(2). We identified proteins in an oxyR mutant that were oxidized by using 2,4-dinitrophenylhydrazine for protein carbonyl detection, followed by identification using a two-dimensional gel/matrix-assisted laser desorption ionization-time of flight approach. Among these was the peptidoglycan-associated lipoprotein, OprL. A double oxyR oprL mutant was constructed and was found to be more sensitive to H(2)O(2) than the oxyR mutant. Provision of the OxyR-regulated alkyl hydroperoxide reductase, AhpCF, but not AhpB or the catalase, KatB, helped protect this strain against H(2)O(2). Given the sensitivity of oxyR oprL bacteria to planktonic H(2)O(2), we next tested the hypothesis that the biofilm mode of growth might protect such organisms from H(2)O(2)-mediated killing. Surprisingly, biofilm-grown oxyR oprL mutants, which (in contrast to planktonic cells) possessed no differences in catalase activity compared to the oxyR mutant, were sensitive to killing by as little as 0.5 mM H(2)O(2). Transmission electron microscopy studies revealed that the integrity of both cytoplasmic and outer membranes of oxyR and oxyR oprL mutants were compromised. These studies suggest that sensitivity to the important physiological oxidant H(2)O(2) in the exquisitely sensitive oxyR mutant bacteria is based not only upon the presence and location of OxyR-controlled antioxidant enzymes such as AhpCF but also on structural reinforcement by the peptidoglycan-associated lipoprotein OprL, especially during growth in biofilms.  相似文献   

6.
7.
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 μM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1506–1513. Original Russian Text Copyright ? 2005 by Semchyshyn, Bagnyukova, Lushchak.  相似文献   

8.
The induction of SOS and adaptive responses by alkylating agents was studied in Escherichia coli mutants tagA and alkA deficient in 3-methyladenine-DNA glycosylase activities. The SOS response was measured using an sfiA::lacZ operon fusion. The sfiA operon, in the double mutant tagA alkA, is induced at 5-50-fold lower concentrations of all tested methylating and ethylating compounds, as compared to the wild-type strain. In all cases, the tagA mutation, which inactivates the constitutive and specific 3-alkyladenine-DNA glycosylase I (TagI), sensitizes the strain to the SOS response. The sensitization effect of alkA mutation, which inactivates the inducible 3-alkyladenine-DNA glycosylase II (TagII), is observed under conditions which allow the induction of the adaptive response. We conclude that the persistence of 3-methyladenine and 3-ethyladenine residues in DNA most likely leads to the induction of the SOS functions. In contrast, the adaptive response, evaluated by O6-methylguanine-DNA methyltransferase activity in cell extracts, was not affected by either tagA or alkA mutations. The results suggest that the SOS and adaptive responses use different alkylation products as an inducing "signal". However, adaptation protein TagII inhibits the induction of the SOS response to some extent, due to its action at the level of signal production. Finally, we provide conditions to improve short-term bacterial tests for the detection of genotoxic alkylating agents.  相似文献   

9.
10.
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair.  相似文献   

11.
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for alkyl peroxide metabolism. A Xanthomonas ahpC mutant was constructed. The mutant had increased sensitivity to organic peroxide killing, but was unexpectedly hyperresistant to H(2)O(2) killing. Analysis of peroxide detoxification enzymes in this mutant revealed differential alteration in catalase activities in that its bifunctional catalase-peroxidase enzyme and major monofunctional catalase (Kat1) increased severalfold, while levels of its third growth-phase-regulated catalase (KatE) did not change. The increase in catalase activities was a compensatory response to lack of AhpC, and the phenotype was complemented by expression of a functional ahpC gene. Regulation of the catalase compensatory response was complex. The Kat1 compensatory response increase in activity was mediated by OxyR, since it was abolished in an oxyR mutant. In contrast, the compensatory response increase in activity for the bifunctional catalase-peroxidase enzyme was mediated by an unknown regulator, independent of OxyR. Moreover, the mutation in ahpC appeared to convert OxyR from a reduced form to an oxidized form that activated genes in the OxyR regulon in uninduced cells. This complex regulation of the peroxide stress response in Xanthomonas differed from that in other bacteria.  相似文献   

12.
13.
S Boiteux  O Huisman    J Laval 《The EMBO journal》1984,3(11):2569-2573
The induction by methylating agents of the SOS function sfiA was measured by means of a sfiA::lac operon fusion in Escherichia coli mutants defective in alkylation repair. The sfiA operon was turned on at a 10-fold lower concentration of methylmethane sulfonate or dimethyl sulfate in tagA strains, lacking specific 3-methyladenine-DNA glycosylase, than in wild-type strains. In contrast, the induction of sfiA by u.v. light was not affected by a tagA mutation. We confirm that tagA strains specifically accumulate 3-methyladenine in their DNA. We conclude that the persistence of 3-methyladenine in E. coli DNA most likely induces the SOS functions. Results on in vitro DNA synthesis further suggest that this induction is due to an unscheduled arrest of DNA synthesis at this lesion.  相似文献   

14.
In Escherichia coli, the cell division block observed during the SOS response requires the product of the sfiA gene, whose expression is regulated negatively by the LexA repressor and positively by the RecA protease. We have studied the effect on sfiA expression of sfiA, sfiB, infA, and infB mutations, which are known to affect SOS-associated filamentation. To measure sfiA expression in the different strains, we first constructed a lambda transducing phage carrying an sfiA::lac operon fusion. Mutations at the sfiA locus (dominant and recessive) and the sfiB locus (recessive) had no effect on sfiA expression. The mutations tif (at the recA locus) and tsl (at the lexA locus) are known to induce filamentation and a high level of sfiA expression at 42 degrees C. The infB1 mutation, which suppresses filamentation in a tif tsl strain at 42 degrees C, reduced sfiA expression at 42 degrees C in tif tsl infB1 and tsl infB1 strains but not in a tif infB1 strain. The infA3 mutation, which suppresses tif-mediated filamentation, reduced induction of sfiA expression in a tif infA3 strain at 42 degrees C or after UV irradiation. The isolation and characterization of sfiA constitutive strains revealed only lexA-linked mutations in a sfiA-background, suggesting that LexA is the only readily eliminated repressor of the sfiA gene. Nevertheless, the infA and infB mutations could define elements involved in the regulation of sfiA expression.  相似文献   

15.
V M Kopylov  I A Khmel' 《Genetika》1983,19(8):1221-1226
To clarify the mechanisms whereby the ColIb-P9 plasmid affects DNA repair processes, its effect was studied in mutant Escherichia coli K-12 cells with altered mutagenesis and DNA repair. The plasmid was shown to protect umuC, uvm, recL and uvrE mutants after UV irradiation. The frequency of UV-induced his+ revertants increased in the presence of the plasmid in umuC, uvm and recL mutant cells. The ColIb-P9 plasmid completely restored the UV mutability and survival of umuC mutants. These results suggest that the ColIb-P9 plasmid may encode a product similar to that of the umuC gene. In the tif1 sfiA lexA spr mutant cells where SOS functions are constitutively expressed, the ColIb-P9 plasmid increased the number of his+ revertants several times. This suggests that the action of ColIb-P9 is probably brought about not via the derepression of the recA gene but at the subsequent stages of the recA+lexA+-dependent DNA error-prone repair.  相似文献   

16.
We have studied the growth and division of xerC, xerD and dif mutants of Escherichia coli, which are unable to resolve dimer chromosomes. These mutants express the Dif phenotype, which includes reduced viability, SOS induction and filamentation, and abnormal nucleoid morphology. Growth was studied in synchronous cultures and in microcolonies derived from single cells. SOS induction and filamentation commenced after an apparently normal cell division, which sheared unresolved dimer chromosomes. This has been called guillotining. Microcolony analysis demonstrated that cell division in the two daughter cells was inhibited after guillotining, and microcolonies formed that consisted of two filaments lying side by side. Growth of these filaments was severely reduced in hipA+ strains. We propose that guillotining at dif destroys the expression of the adjacent hipBA genes and, in the absence of continued formation of HipB, HipA inhibits growth. The length of the filaments was also affected by SfiA: sfiA dif hipA mutants initially formed filaments, but cell division at the ends of the filaments ultimately produced a number of DNA-negative cells. If SOS induction was blocked by lexA3 (Ind-), filaments did not form, and cell division was not inhibited. However, pedigree analysis of cells in microcolonies demonstrated that lethal sectoring occurred as a result of limited growth and division of dead cells produced by guillotining.  相似文献   

17.
Vasil'eva SV  Makhova EV 《Genetika》2003,39(8):1033-1038
Oxidative stress formed in Escherichia coli cells is known to bring about a complex induction of alternative DNA repair processes, including SOS, SoxRS, and heat-shock response (HSR). The modification by heat shock of the expression of sfiA and soxS genes induced by oxidative agents H2O2, menadione and 4-nitroquinoline-1-oxide (4NQO) was studied for the first time. Quantitative parameters of gene expression were examined in E. coli strains with fused genes (promoters) sfiA::lacZ and soxS::lacZ. The expression of these genes induced by cell treatment with H2O2, but not menadione or 4NQO, was shown to decrease selectively after exposure to heat shock. Since genetic activity of menadione and 4NQO depends mainly on the formation of superoxide anion O2-, it is assumed that the effect of selective inhibition by heat-shock of sfiA and soxS gene expression in experiments with H2O2 is connected with activity of DnaK heat shock protein, which, unlike other heat-shock proteins, cannot be induced by superoxide anion O2-.  相似文献   

18.
The sfiA and sfiB mutations, originally isolated in thermoresistant ultraviolet-resistant revertants of a tif lon strain, also suppressed filamentation in tsl strains (mutated at the lexA locus). When deoxyribonucleic acid synthesis was arrested, however, sfi-independent filamentation occurred. Other SOS functions were not affected by sfiA and sfiB mutations; in particular, ultraviolet-induced repair and mutagenesis of bacterial deoxyribonucleic acid were normal, as was tsl-tif-induced synthesis of recA protein. Genetic studies (i) established the identity of map location of the sfiA and sulA loci, (ii) showed that the two sfiB mutations are recessive, and (iii) showed that of six independent sfiA mutations, three are recessive and three are dominant. One sfiB strain was shown to have a 6% growth disadvantage relative to a sfi+ or sfiA strain. It is proposed that the sfiA locus may define the structural gene of a hypothetical inducible SOS-associated division inhibitor.  相似文献   

19.
Certain Escherichia coli strains were shown to possess a novel system of cell division inhibition, called the SfiC+ phenotype. SfiC+ filamentation had a number of properties similar to those of sfiA-dependent division inhibition previously described: (i) both are associated with the SOS response induced by expression of the recA(Tif) mutation, (ii) both are associated with cell death, (iii) both are amplified in mutants lacking the Lon protease, and (iv) both are suppressed by sfiB mutations. SfiC+ filamentation and sfiA-dependent division inhibition differed in (i) the physiological conditions under which loss of viability is observed, (ii) the extent of amplification in lon mutants, (iii) their genetic regulation (SfiC+ filamentation is not under direct negative control of the LexA repressor), and (iv) their genetic determinants (SfiC+ filamentation depends on a locus, sfiC+, near 28 min on the E. coli map and distinct from sfiA).  相似文献   

20.
A spontaneous Xanthomonas campestris pv. phaseoli H(2)O(2)-resistant mutant emerged upon selection with 1 mM H(2)O(2). In this report, we show that growth of this mutant under noninducing conditions gave high levels of catalase, alkyl hydroperoxide reductase (AhpC and AhpF), and OxyR. The H(2)O(2) resistance phenotype was abolished in oxyR-minus derivatives of the mutant, suggesting that elevated levels and mutations in oxyR were responsible for the phenotype. Nucleotide sequence analysis of the oxyR mutant showed three nucleotide changes. These changes resulted in one silent mutation and two amino acid changes, one at a highly conserved location (G197 to D197) and the other at a nonconserved location (L301 to R301) in OxyR. Furthermore, these mutations in oxyR affected expression of genes in the oxyR regulon. Expression of an oxyR-regulated gene, ahpC, was used to monitor the redox state of OxyR. In the parental strain, a high level of wild-type OxyR repressed ahpC expression. By contrast, expression of oxyR5 from the X. campestris pv. phaseoli H(2)O(2)-resistant mutant and its derivative oxyR5G197D with a single-amino-acid change on expression vectors activated ahpC expression in the absence of inducer. The other single-amino-acid mutant derivative of oxyR5L301R had effects on ahpC expression similar to those of the wild-type oxyR. However, when the two single mutations were combined, as in oxyR5, these mutations had an additive effect on activation of ahpC expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号