首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the chaperone-like activity of alginate stabilization and refolding of alkaline phosphatase (ALP) was investigated in the presence of alginate through two different approaches, the soluble form and microcapsule assisted methods. It was found that in the presence of microcapsules, ALP can be stabilized to a higher degree compared with the water-soluble form, whereas the denatured ALP is refolded with a higher yield through latter method. Lower refolding yields of alginate beads compared with its soluble form may be the result of lower refolding rate of ALP upon elution of the bound enzyme by dispersing the precipitate in NaCl which left the unfolded protein in an unsuitable environment, providing enough time for protein aggregation and leading finally to lower recovered activity compared with application of soluble form of alginate. In addition in the case of alginate capsules, the choice of suitable divalent ion is essential for stability and assistance in refolding.  相似文献   

2.
It is now well established that alpha-cyclodextrin (alpha-CD) is a valuable folding agent in refolding processes of several denatured enzyme solutions. The refolding of Gu-HCl denatured alpha-amylase in the dilution-additive mode revealed that alpha-CD enhanced the refolding yield by 20-30% depending upon alpha-CD concentration. However, the refolding efficiency of the Gu-HCl denatured alpha-amylase through the artificial chaperone-assisted method indicated that alpha-CD enhanced the activity recovery of denatured alpha-amylase by almost 50% and also increased the reactivation rate constant relative to the unassisted control sample. The higher refolding efficiency should be due to different mechanism played by alpha-CD in this technique. In addition, our data indicated that higher refolding yields are obtained when the residual Gu-HCl concentration is low in the refolding environment and when the capture agent is removed not in a stepwise manner from the protein-detergent complexes in the stripping step of the whole process. Collectively, the results of this investigation expand the range of procedural variations used to refold different denatured proteins through artificial chaperone-assisted method.  相似文献   

3.
Cyclodextrins (CDs) possess hydrophobic surfaces, which probably shield the hydrophobic surfaces of denatured proteins and prevent the direct interactions between the surfaces which are believed to be responsible for protein aggregation during refolding process. This probability was evaluated by studying the refolding process of denatured alpha-amylase in the presence and absence of alpha-CD, as a dilution additive agent. Our data indicate that in the presence of 100 mM alpha-CD in the refolding buffer, the extent of aggregation reduces by almost 90%. Spectrofluorometric analysis of the refolding intermediate(s) also indicates that the tertiary structure of the refolded alpha-amylase, in the presence of alpha-CD, is very similar to the tertiary structure of the native protein. However, this similarity was distorted upon addition of exogenous hydrophobic (aliphatic or aromatic) amino acids to the refolding buffer, meaning that the hydrophobic interactions between alpha-CD and the denatured protein play significant role in preventing aggregate formation. In addition, by weakening the extent of these hydrophobic interactions by adding polarity-reducing agent (e.g. ethylene glycol) to the refolding buffer, more aggregates were formed. In contrast, strengthening these interactions by enhancing the ionic strength of the refolding buffer made these hydrophobic interactions very strong. Therefore, alpha-CD could not depart from the protein/alpha-CD complex, as it usually does during the process of refolding. As a result, more aggregates were formed in the presence of alpha-CD compared to the corresponding control samples.  相似文献   

4.
Desai A  Lee C  Sharma L  Sharma A 《Biochimie》2006,88(10):1435-1445
Cyclodextrins (CDs), in the presence or absence of detergents, have been reported to suppress aggregate formation during the refolding of a number of proteins. A structure-activity relationship study between CD chemistry and refolding of lysozyme was performed and compared to carbonic anhydrase, in order to better understand the mechanism of CD-assisted protein refolding and to identify CDs that could function as good protein folding agents. Among the natural CDs, which have only hydroxyl groups, alpha-CD, with a smaller cavity size was more effective than the oligosaccharide with a larger cavity, gamma-CD. Replacement of the hydroxyls with other functional groups did not improve, but could seriously interfere, with the lysozyme refolding ability of alpha-CD. In case of gamma-CD, substitution of its hydroxyls with other groups either enhanced or diminished its refolding capability towards lysozyme. In general, neutral CDs were better refolding agents than the charged sugars. The presence of anionic substituents like carboxyl and phosphate groups actually promoted aggregate formation and completely abolished the sugar's refolding ability. This effect was more pronounced with lysozyme than with carbonic anhydrase. CDs with cationic functional groups did not show any significant effects on lysozyme refolding. The presence of both anionic and cationic substituents on the same CD molecule was found to partially restore its renaturation ability. Electrophoresis data indicate that CDs, which promoted lysozyme refolding, arrested aggregation at the stage of smaller soluble aggregates. Interestingly, the structure-activity relationship observed with lysozyme was quite similar to that reported for a non-disulfide protein, carbonic anhydrase. These results suggest that the effects of CDs on protein refolding are attributed to their ability to suppress aggregation of proteins. CDs may show properties similar to chaotropic agents, which may help explain their anti-aggregation and protein refolding ability. Besides alpha-CD, a number of other neutral CDs were found to be effective protein folding aids.  相似文献   

5.
Artificial chaperone-assisted refolding has been shown to be an effective approach for improving the refolding yield of some of the denatured proteins. Since identical concentrations of various detergents do not induce similar variations in the protein structures, we arranged to evaluate the artificial chaperoning capabilities of several ionic detergents as a function of charge, structure, and the hydrophobic tail length of the detergent. Our results indicate that carbonic anhydrase can be refolded from its denatured state via artificial chaperone strategy using both anionic and cationic detergents. However, the extent of refolding assistance (kinetic and refolding yield) were different due to protein and detergent net charges, detergent concentrations, and the length of hydrophobic portion of each detergent. These observed differences were attributed to physical properties of CA-detergent complexes and/or to the kinetics of detergent stripping by beta-cyclodextrin from the protein-detergent complexes which is apparently dependent on the detergent-beta-CD association constants and the nature of the partially stripped complexes.  相似文献   

6.
A novel artificial chaperone system, based on combination of oppositely charged detergents, was elaborated to refold soluble alkaline phosphatase. Upon dilution of urea-denatured alkaline phosphatase to a nondenaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to gradually remove the detergent molecules. In that respect, we used detergents with variable charges and tail lengths to initiate and complete the refolding process. The results obtained from various analyses (fluorescence, UV, circular dichroism, surface tension, turbidity measurements and activity assays) indicated that the extent of refolding assistance was different due to detergents structure and also the length of hydrophobic portion of each detergent. These observed differences were attributed to the strong electrostatic interactions among the capturing and stripping detergents used in this investigation. Collectively it is expected that protein refolding process can be achieved easier, cheaper and more efficient, using the new technique reported here.  相似文献   

7.
Refolding of GuHCl-denatured recombinant-human growth hormone (r-hGH) was investigated in both dilution additive and artificial chaperone assisted modes. In both techniques, it was found that CTAB is a better additive (in dilution mode) or a capturing agent (in artificial chaperone method). Neither of the two techniques was capable of complete inhibition of aggregates formed during refolding process. In dilution, using CTAB or alpha-cyclodextrin (alpha-CD) as two different additives, the aggregation was inhibited by almost 55%. However, the extent of inhibition raised to almost 82% in artificial chaperone assisted mode using CTAB as the capturing and alpha-CD as the stripping agents. Maximum inhibition of aggregation (up to 97%) was obtained when the entire process of refolding was done at 4 degrees C. However, under this temperature program, the far-UV CD and intrinsic fluorescence spectra of the refolded samples were not superimposable on their respective native spectra. The spectra superimposibilities were obtained when the refolding process was achieved under a well worked out temperature program: incubation of the sample for 3 min at 4 degrees C after initiation of the stripping step followed by overnight incubation at 22 degrees C. Based on these data, it is expected that higher activity recovery yields of recombinant proteins, particularly at relatively higher protein concentrations, could be achieved by getting a better molecular understanding of major factors responsive for aggregation and refolding pathways.  相似文献   

8.
Refolding of GuHCl-denatured α-amylase was investigated using the artificial chaperone-assisted method. Three different cationic detergents (CTAB, TTAB and DTAB) and two nonionic detergents (Tween 80 and Triton X-100) were evaluated as the capturing reagents along with α- and β-CD as the stripping agents. The refolding yields, at a final protein concentration of 0.15 mg/ml, were 82, 71 and 66% in the presence of β-CD and CTAB, TTAB or DTAB, respectively. To improve the refolding yield and to suppress the extent of aggregation, the initial rate of the stripping step was slowed down by maintaining the refolding environment at 4°C for about 3 min followed by raising the temperature to 25°C. Under this thermal procedure, the refolding yield and the extent of aggregation were changed from 82 and 25% at 25°C to 94 and 7% at 4°C, respectively. These findings may assist the activity recovery of recombinant proteins at relatively high concentrations.  相似文献   

9.
Gemini surfactants are a new class of surfactants that consist of two hydrophilic head groups and two hydrophobic tails separated by a spacer group. As the properties of geminis are different to their monomeric counterparts, a large number of applications have been investigated. Here we report on the use of a new class of gemini detergents containing a disulfide bond in the spacer (Det-SS-Det) for protein refolding. Using lysozyme as a model protein we could demonstrate that the disulfide gemini detergents allow oxidative refolding of the protein in the absence of any external redox system in an “artificial chaperone system”. Refolding kinetics using gemini disulfide detergents differing in their hydrophobicity were analysed to determine the folding and aggregation rate constants. The results point to an important role of the transiently formed mixed disulfides between the protein and the detergent (Prot-SS-Det) in the oxidative refolding process of lysozyme.  相似文献   

10.
Two different artificial chaperone systems were evaluated in this work using either detergents or CDs as the stripping agents. Upon dilution of urea-denatured α-amylase to a non-denaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to remove the detergent molecules. Our results by fluorescence, UV, turbidity measurement, circular dichroism, surface tension and activity assay indicated that the extent of refolding assistance was different due to different inter- and intra- molecular interactions in the two different systems. However, the high activity recovery in the presence of detergents, as the stripping agent, suggests that they can constitute suitable replacement for the more expensive and common stripping agent of cyclodextrins.  相似文献   

11.
Cycloamylose as an efficient artificial chaperone for protein refolding   总被引:7,自引:0,他引:7  
High molecular weight cyclic alpha-1,4-glucan (referred to as cycloamylose) exhibited an artificial chaperone property toward three enzymes in different categories. The inclusion properties of cycloamylose effectively accommodated detergents, which keep the chemically denatured enzymes from aggregation, and promoted proper protein folding. Chemically denatured citrate synthase was refolded and completely recovered it's enzymatic activity after dilution with polyoxyethylenesorbitan buffer followed by cycloamylose treatment. The refolding was completed within 2 h, and the activity of the refolded citrate synthase was quite stable. Cycloamylose also promoted the refolding of denatured carbonic anhydrase B and denatured lysozyme of a reduced form.  相似文献   

12.
Regarding the world wide success of artificial chaperone-assisted protein refolding technique and based on its well worked-out mechanism, it is anticipated that the lipid moieties of glycosylphosphatidylinositol (GPI) group, which is present in some membrane proteins, might interfere with the capturing step of the technique. To find an answer, we evaluated the chemical denaturation and also the refolding behavior of insoluble and soluble alkaline phosohatase (ALP), with or without GPI group, respectively. The results indicated that the presence of GPI in the enzyme increased the stability of the protein against chemical denaturation while it decreased its refolding yield by the artificial chaperone refolding technique. The lower refolding yield, compared to soluble ALP (sALP), might be due to a less efficient stripping step caused by new interactions imparted to the refolding elements of the system especially those among the hydrophobic tails of GPI and the capturing agent of the technique. These new interactions will interrupt the kinetics of detergent stripping from the captured molecules by the stripping agent (i.e., cyclodextrins). This situation will lead to higher intermolecular hydrophobic interactions among the refolding protein intermediates leading to their higher misfolding and aggregation.  相似文献   

13.
Protein refolding from bacterial inclusion bodies is a crucial step for the production of recombinant proteins, but the refolding step often results in significantly lower yields due to aggregation. To prevent aggregation, chemical additives are often used. However, the ability of additives to effectively increase refolding yields are protein dependent, and therefore, it is important to understand the manner in which the substructures of additives confer suitable properties on protein refolding. We focused attention on nonionic detergents, the polyethylene glycol monooleyl ether (PGME) series, and systematically studied the influence of two to 90 polyethylene glycol (PEG) lengths of PGMEs on the refolding of pig muscle lactate dehydrogenase (LDH), hen egg white lysozyme, and yeast α‐glucosidase. PGMEs with longer PEG lengths such as PGME20, 50, and 90 suppressed aggregation, and increased refolding yields. Notably, PGME20 increased the LDH yield to 56.7% from 2.5% without additives. According to the refolding kinetic analysis of LDH, compared with PGME50 and 90, the refolding rate constant in PGME20 solutions remained relatively high at a broad range of concentrations because of its weaker steric hindrance of intramolecular interactions involved in folding, leading to a preference for refolding over aggregation. These findings should provide basic guidelines to identify appropriate PEG‐based nonionic detergents for protein refolding.  相似文献   

14.
GroEL has a greater affinity for the mitochondrial isozyme (mAAT) of aspartate aminotransferase than for its cytosolic counterpart (cAAT) (Mattingly JR Jr, Iriarte A, Martinez-Carrion M, 1995, J Biol Chem 270:1138-1148), two proteins that share a high degree of sequence similarity and an almost identical spatial structure. The effect of detergents on the refolding of these large, dimeric isozymes parallels this difference in behavior. The presence of non-ionic detergents such as Triton X-100 or lubrol at concentrations above their critical micelle concentration (CMC) interferes with reactivation of mAAT unfolded in guanidinium chloride but increases the yield of cAAT refolding at low temperatures. The inhibitory effect of detergents on the reactivation of mAAT decreases progressively as the addition of detergents is delayed after starting the refolding reaction. The rate of disappearance of the species with affinity for binding detergents coincides with the slowest of the two rate-limiting steps detected in the refolding pathway of mAAT. Limited proteolysis studies indicate that the overall structure of the detergent-bound mAAT resembles that of the protein in a complex with GroEL. The mAAT folding intermediates trapped in the presence of detergents can resume reactivation either upon dilution of the detergent below its CMC or by adding beta-cyclodextrin. Thus, isolation of otherwise transient productive folding intermediates for further characterization is possible through the use of detergents.  相似文献   

15.
A novel artificial chaperone system using a combination of detergents and alginate was developed to refold three enzymes with totally different structures. Upon dilution of denatured protein in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to gradually remove the detergent molecules. In that respect, we used alginate, a linear copolymer of d-mannuronic acid and l-guluronic acid, to initiate and complete the refolding process. The results indicated that the extent of refolding assistance for the proteins was different due to detergent structure and also the length of hydrophobic portion of each detergent. These observed differences were attributed to the strong electrostatic and hydrophobic interactions among the capturing and stripping agents used in this investigation. Based on this newly developed method, it is expected that the protein refolding operation can be achieved easily, cheaply and efficiently.  相似文献   

16.
Insoluble beta-cyclodextrin (beta-CD) copolymers have been used for the refolding of thermally and/or chemically denatured carbonic anhydrase with refolding yield of 40% using 300 mg of the copolymer/ml refolding solution containing 0.042 mg/ml protein. In an attempt to enhance the refolding yield with lower quantities of the copolymer, a new beta-CD-rich copolymer with higher beta-CD content was synthesized. Regarding the need for rapid stripping of the detergent molecules from the detergent-protein complexes formed in the capture step of the technique (artificial chaperone-assisted refolding), experimental variables (e.g. copolymer and the protein contents) were optimized to improve the refolding yields along with depressing the aggregate formation. In addition, comparative studies using different ionic detergents and the copolymer were conducted to get a more comprehensive understanding of the detergent's tail length in the stripping step of the process. Our results indicated that under the optimal developed refolding environment, the denatured CA was refolded with a yield of 75% using only 5mg of the copolymer/1.2 ml refolding solution containing 0.0286 mg/ml protein. Taking into account the recycling potential of the copolymer, the new resin, with significant cost-cutting capability, is a suitable candidate for industrial applications.  相似文献   

17.
Despite extensive structural and kinetic studies, the mechanism by which the Escherichia coli chaperonin GroEL assists protein folding has remained somewhat elusive. It appears that GroEL might play an active role in facilitating folding, in addition to its role in restricting protein aggregation by secluding folding intermediates. We have investigated the kinetic mechanism of GroEL-mediated refolding of the small protein barstar. GroEL accelerates the observed fast (millisecond) refolding rate, but it does not affect the slow refolding kinetics. A thermodynamic coupling mechanism, in which the concentration of exchange-competent states is increased by the law of mass action, can explain the enhancement of the fast refolding rates. It is not necessary to invoke a catalytic role for GroEL, whereby either the intrinsic refolding rate of a productive folding transition or the unfolding rate of a kinetically trapped off-pathway intermediate is increased by the chaperonin.  相似文献   

18.
In order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.95 M) compared to wild-type GroES (Cm=1.1 M). ESC7 was found to be about 10 kcal mol(-1) more stable than the wild-type GroES heptamer at 50 microg ml(-1). Kinetic unfolding and refolding experiments of ESC7 revealed that the increased stability was mainly attributed to a slower unfolding rate. Also a transient intermediate was detected in the refolding reaction. Interestingly, at the physiological GroES concentration (>1 mg ml(-1)), the free energy of unfolding for GroES heptamer exceeded that for ESC7. These results showed that at low protein concentrations (<1 mg ml(-1)), the covalent linking of subunits contributes to the stability but also complicates the refolding kinetics. At physiological concentrations of GroES, however, the oligomeric state is energetically preferred and the advantages of covalent linkage are lost. This finding highlights a possible advantage in transitioning from multi-domain proteins to oligomeric proteins with small subunits in order to improve structural and kinetic stabilities.  相似文献   

19.
Protein refolding using a simple dilution method in a microchannel often led to the formation of protein aggregates, which bound to the microchannel wall, resulting in low refolding yields. To inhibit aggregation and improve refolding yields, an artificial chaperone-assisted (ACA) refolding, which employed detergents and β-cyclodextrin was used. Model proteins, hen egg white lysozyme and yeast α-glucosidase, were successfully refolded in a microchannel. The microscopic observation showed that the ACA method suppressed protein aggregation and facilitated the refolding of lysozyme, whereas significant aggregation was observed when a simple dilution method was employed. The ACA method increased the lysozyme refolding yield by 40% over the simple dilution approach. Similarly, for α-glucosidase, the refolding yield using the ACA method (ca. 50%) was approximately three times compared with the simple dilution method. The ACA refolding method is a suitable approach to use in the refolding of proteins using a microfluidic system.  相似文献   

20.
Dehydrodolichyl diphosphate synthase (DDPPs) catalyzes the sequential condensation of isopentenyl diphosphate with farnesyl diphosphate to synthesize long-chain dehydrodolichyl diphosphate, which serves as a precursor of glycosyl carrier in glycoprotein biosynthesis in eukaryotes. To perform kinetic and structural studies of DDPPs, we have expressed yeast DDPPs using Escherichia coli as the host cell. Thioredoxin and His tag were utilized to increase the solubility of the recombinant protein and facilitate its purification using Ni-nitrilotriacetic acid (NTA) column. The protein was overexpressed in E. coli but mostly existed in pellet in the absence of detergent. The low quantity of soluble DDPPs was purified using Ni-NTA, Mono Q anion-exchange, and size-column chromatographies. The protein in the pellet was solubilized with 7 M urea and purified using Ni-NTA under denaturing condition. The protein refolding was achieved via the stepwise dialysis to remove the denaturant in the presence of 6 mM beta-mercaptoethanol. Detergent n-octyl-beta-d-glucopyranoside and Triton X-100 increased the solubility of the DDPPs so that refolding can be performed at higher protein concentration. Alternatively, on-column refolding was carried out in a single step to obtain the active protein in large quantities. beta-Mercaptoethanol and Triton were both required in this quick refolding process. The kinetic studies indicated that the soluble and refolded DDPPs have comparable activities (k(cat) = 2 x 10(-4) s(-1)). Unlike its bacterial homologue, undecaprenyl diphosphate synthase, yeast DDPPs activity was not enhanced by Triton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号