首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An early diagnosis of aseptic loosening of a total hip replacement (THR) by plain radiography, scintigraphy or arthography has been shown to be less reliable than using a vibration technique. However, it has been suggested that it may be possible to distinguish between a secure and a loose prosthesis using a vibration technique. In fact, vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. Several studies have combined the vibration technique with the finite element (FE) method in order to better understand the events involved in the experimental technique. In the present study, the main goal is to simulate the change in the resonance frequency during the osseointegration process of a cementless THR (Zweymüller). The FE method was used and a numerical modal analysis was conducted to obtain the natural frequencies and mode shapes under vibration. The effects were studied of different bone and stem material properties, and different contact conditions at the bone–implant interface. The results were in agreement with previous experimental and computational observations, and differences among the different cases studied were detected. As the osseointegration process at the bone–implant interface evolved, the resonance frequency values of the femur–prosthesis system also increased. In summary, vibration analysis combined with the FE method was able to detect different boundary conditions at the bone–implant interface in cases of both osseointegration and loosening.  相似文献   

2.
Abstract

The success of dental implant treatment depends on the healing of both hard and soft tissues. While osseointegration provides initial success, the biological seal of the peri-implant soft tissue is crucial for maintaining the long term success of implants. Most studies of the biological seal of peri-implant tissues are based on animal or monolayer cell culture models. To understand the mechanisms of soft tissue attachment and the factors affecting the integrity of the soft tissue around the implants, it is essential to obtain good quality histological sections for microscopic examination. The nature of the specimens, however, which consist of both metal implant and soft peri-implant tissues, poses difficulties in preparing the specimens for histomorphometric analysis of the implant-soft tissue interface. We review various methods that have been used for the implant-tissue interface investigation with particular focus on the soft tissue. The different methods are classified and the advantages and limitations of the different techniques are highlighted.  相似文献   

3.
The aim of this study is to predict the evolution of the resonance frequency of the bone-implant interface in a dental implant by means of finite element simulation. A phenomenological interface model able to simulate the mechanical effects of the osseointegration process at the bone-implant interface is applied and compared with some experimental results in rabbits. An early stage of slow bone ingrowth, followed by a faster osseointegration phase until final stability is predicted by the simulations. The evolution of the resonance frequency of the implant and surrounding tissues along the simulation period was also obtained, observing a 3-fold increase in the first principal frequency. These findings are in quantitative agreement with the experimental measurements and suggest that the model can be useful to evaluate the influence of mechanical factors such as implant geometry or implant loading on the indirect evaluation of the process of implant osseintegration.  相似文献   

4.
Stability of an implant is defined by its ability to undergo physiological loading–unloading cycles without showing excessive tissue damage and micromotions at the interface. Distinction is usually made between the immediate primary stability and the long-term, secondary stability resulting from the biological healing process. The aim of this research is to numerically investigate the effect of initial implantation press-fit, bone yielding, densification and friction at the interface on the primary stability of a simple bone–implant system subjected to loading–unloading cycles. In order to achieve this goal, human trabecular bone was modeled as a continuous, elasto-plastic tissue with damage and densification, which material constants depend on bone volume fraction and fabric. Implantation press-fit related damage in the bone was simulated by expanding the drilled hole to the outer contour of the implant. The bone–implant interface was then modeled with unilateral contact with friction. The implant was modeled as a rigid body and was subjected to increasing off-axis loading cycles. This modeling approach is able to capture the experimentally observed primary stability in terms of initial stiffness, ultimate force and progression of damage. In addition, it is able to quantify the micromotions around the implant relevant for bone healing and osseointegration. In conclusion, the computationally efficient modeling approach used in this study provides a realistic structural response of the bone–implant interface and represents a powerful tool to explore implant design, implantation press-fit and the resulting risk of implant failure under physiological loading.  相似文献   

5.
doi: 10.1111/j.1741‐2358.2011.00569.x Influence of different mucosal resiliency and denture reline on stress distribution in peri‐implant bone tissue during osseointegration. A three‐dimensional finite element analysis Objective: The aim of this study was to evaluate the influence of mucosal properties and relining material on the stress distribution in peri‐implant bone tissue during masticatory function with a conventional complete denture during the healing period through finite element analysis. Materials and Methods: Three‐dimensional models of a severely resorbed mandible with two recently placed implants in the anterior region were created and divided into the following situations: (i) conventional complete denture and (ii) relined denture with soft lining material. The mucosal tissue properties were divided into soft, resilient and hard. The models were exported to mechanical simulation software; two simulations were carried out with a load at the lower right canine (35 N) and the lower right first molar (50 N). Data were qualitatively evaluated using Maximum Principal Stress, in MPa, given by the software. Results: All models showed stress concentrations in the cortical bone corresponding to the cervical part of the implant. The mucosal properties influenced the stress in peri‐implant bone tissue showing a different performance according to the denture base material. The simulations with relined dentures showed lower values of stress concentration than conventional ones. Conclusions: It seems that the mucosal properties and denture reline have a high influence on the stress distribution in the peri‐implant bone during the healing period.  相似文献   

6.
Immediate loading(IL)increases the risk of marginal bone loss.The present study investigated the biomechanical response of peri-implant bone in rabbits after IL,aiming at optimizing load management.Ninety-six implants were installed bilaterally into femurs of 48 rabbits.Test implants on the left side created the maximal initial stress of 6.9 and 13.4 MPa in peri-implant bone and unloaded implants on the contralateral side were controls.Bone morphology and bone-implant interface strength were measured with histological examination and push-out testing during a 12-week observation period.Additionally,the animal data were incorporated into finite element(FE)models to calculate the bone stress distribution at different levels of osseointegration.Results showed that the stress was concentrated in the bone margin and the bone stress gradually decreased as osseointegration proceeded.A stress of about 2.0 MPa in peri-implant bone had a positive effect on new bone formation,osseointegration and bone-implant interface strength.Bone loss was observed in some specimens with stress exceeding 4.0 MPa.Data indicate that IL significantly increases bone stress during the early postoperative period,but the load-bearing capacity of peri-implant bone increases rapidly with an increase of bone-implant contact.Favorable bone responses may be continually promoted when the stress in peri-implant bone is maintained at a definite level.Accordingly,the progressive loading mode is recommended for IL implants.  相似文献   

7.
Development of surface treatments has enabled secure attachment of dental implants in less than 1 month. Consequently, it is necessary to characterize accurately the osseointegration of the implant surface in the region of the bone-implant contact (BIC). We developed a method for sample preparation that preserves both bone and BIC to permit analysis of the contact interface. We prepared eight nanotextured implants and implanted them in rabbit tibias. After healing for 30 days, outcomes were analyzed using both our bone preservation protocol and routine decalcification followed by preparation of histological sections stained by hematoxylin and eosin (H & E). Pull-out tests for implant osseointegration were performed after healing. Non-implanted samples of rabbit mandible were used as a control for assessing organic and mineralized bone characteristics and bone structure. Our bone preservation protocol enabled evaluation of many of the same bone characteristics as histological sections stained with H & E. Our protocol enables analysis of implant samples, implant surfaces and osseointegration without risk of BIC damage.  相似文献   

8.
Bone marrow-derived mesenchymal stem cells(BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium's inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.  相似文献   

9.
Osseointegration of implant provides a stable support for the prosthesis under functional loads. The timing of loading is a critical parameter that can govern the success of the osseointegration of implant. However, it is not clear whether the early loading can affect the success of osseointegration, or whether the no-loading healing period can be shortened. This paper presents an animal study conducted to investigate how external loads influence the osseointegration at the initial stage of healing. Titanium implants were inserted into the goat tibia laterally, and different axial loadings were applied to the implants in 4 weeks after surgery. After the 2 weeks period of early loading, animals were sacrificed and the tibia bones with the implants were cut off from the bodies. Then mechanical test was employed to find out the differences in the pull-out force, and shear strength at the bone-implant interface between the non-loaded and the loaded implants. The implant-bone interfaces were analyzed by histomorphometric method, SEM (scanning electron micrograph) and EDS (energy density spectrum). The results indicated that the bone-implant interface did not well integrate 4 weeks after surgery, and the fibrous tissue could be found at the interfaces of the specimens without loadings. While the results of loaded specimens with 10 N axial force showed that that parts of the interface were well integrated, indicating that the early mild loading may play a positive role in the process of the osseointegration. The results support that a certain range of external loading would influence the process of osseointegration, and appropriate mechanical loading can be applied to shorten the osseointegration period after surgery. Supported by the National Natural Science Foundation of China (Grant Nos. 30370376, 10529202 and 10672015).  相似文献   

10.
Extracortical bone growth with osseointegration of bone onto the shaft of massive bone tumour implants is an important clinical outcome for long-term implant survival. A new computational algorithm combining geometrical shape changes and bone adaptation in 3D Finite Element simulations has been developed, using a soft tissue envelope mesh, a novel concept of osteoconnectivity, and bone remodelling theory. The effects of varying the initial tissue density, spatial influence function and time step were investigated. The methodology demonstrated good correspondence to radiological results for a segmental prosthesis.  相似文献   

11.
The aims of this study were to examine the effect of implant neck design and cortical bone thickness using 3D finite element analysis and to analyse the stability of clinical evidence based on micromotion and principal stress. Four commercial dental implants for a type IV bone and maxillary segments were created. Various parameters were considered, including the osseointegration condition, loading direction and cortical bone thickness. Micromotion and principal stresses were used to evaluate the failure of osseointegration and bone overloading, respectively. It was found that the maximum stress of the peri-implant bone decreased as cortical bone thickness increased. The micromotion level in full osseointegration is less than that in non-osseointegration and it also decreases as cortical bone thickness increases. The cortical bone thickness should be measured before surgery to help select a proper implant. In the early stage of implantation, the horizontal loading component induces stress concentration in bone around the implant neck more easily than does the vertical loading component, and this may result in crestal bone loss.  相似文献   

12.
目的:比较上颌窦挤压内提升(OSFE)植骨与不植骨种植修复的临床效果。方法:选择上颌后牙区种植修复的35例患者,其剩余牙槽嵴高度(RBH)为4~8 mm,共植入43颗种植体。A组16例患者为植骨组,20个种植位点,牙槽骨可用骨高度平均(5.87±1.19)mm,植入人工骨粉后植入种植体;B组19例患者为不植骨组,23个种植位点,缺牙区牙槽骨可用骨高度平均(5.67±1.10)mm,上颌窦提升后直接植入种植体。6个月后行二期手术完成修复。采用临床检查、X线检查及视觉模拟评分法(visual analogue scale,VAS)进行效果评价。结果:两组病例的牙槽嵴高度差异比较无统计学意义。在平均约36.7个月的随访期内,A组种植体的存留率为100%(20/20),B组中有1枚种植体因咬合力过大及口腔卫生较差脱落,种植体的存留率为95.6%(22/23),两组病例的存留率比较无统计学差异。两组患者的VAS值比较亦相当。所有种植体骨结合良好,种植体周围软组织无炎症,种植义齿咀嚼功能良好。结论:在严格控制适应症、准确掌握种植技巧的前提下,RBH在4~8 mm之间的病例无需额外植入骨代替材料即可取得理想的修复效果,简化了手术的操作,减少了手术的风险和创伤,节省了手术的时间和费用,易被患者接受。  相似文献   

13.
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young’s modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.  相似文献   

14.
The experimental evaluation of any total knee replacement (TKR) design should include the pre-implantation quantification of its mechanical performance during tests that simulate the common activities of daily living. To date, few dynamic TKR simulation studies have been conducted before implantation. Once in vivo, the accurate and reproducible assessment of TKR design mechanics is exceedingly difficult, with the secondary variables of the patient and the surgical technique hindering research. The current study utilizes a 6-degree-of-freedom force-controlled knee simulator to quantify the effect of TKR design alone on TKR mechanics during a simulated walking cycle. Results show that all eight TKR designs tested elicited statistically different measures of tibial/femoral kinematics, simulated soft tissue loading, and implant geometric restraint loading during an identical simulated gait cycle, and that these differences were a direct result of TKR design alone. Maximum ranges of tibial kinematics over the eight designs tested were from 0.8mm anterior to 6.4mm posterior tibial displacement, and 14.1 degrees internal to 6.0 degrees external tibial rotation during the walking cycle. Soft tissue and implant reaction forces ranged from 106 and 222N anteriorly to 19 and 127N posteriorly, and from 1.6 and 1.8Nm internally to 3.5 and 5.9Nm externally, respectively. These measures provide valuable experimental insight into the effect of TKR design alone on simulated in vivo TKR kinematics, bone interface loading and soft tissue loading. Future studies utilizing this methodology should investigate the effect of experimentally controlled variations in surgical and patient factors on TKR performance during simulated dynamic activity.  相似文献   

15.
Osseointegration, understood as an intimate apposition and interdigitation of bone to a biomaterial, is usually regarded as a major condition for the long-term clinical success of bone implants. Clearly, the anchorage of an implant to bone tissue critically relies on the formation of new bone between the implant and the surface of the old peri-implant bone and depends on factors such as the surface microtopography, chemical composition and geometry of the implant, the properties of the surrounding bone and the mechanical loading process. The main contribution of this work is the proposal of a new mathematical framework based on a set of reaction-diffusion equations that try to model the main biological interactions occurring at the surface of implants and is able to reproduce most of the above mentioned biological features of the osseointegration phenomenon. This is a two-part paper. In this first part, a brief biological overview is initially given, followed by the presentation and discussion of the model. In addition, two-dimensional finite element simulations of the bone-ingrowth process around a dental implant with two different surface properties are included to assess the validity of the model. Numerical solutions show the ability of the model to reproduce features such as contact/distance osteogenesis depending upon the specific surface microtopography. In Part 2 [Moreo, P., García-Aznar, J.M., Doblaré, M., 2008. Bone ingrowth on the surface of endosseous implants. Part 2: influence of mechanical stimulation, type of bone and geometry. J. Theor. Biol., submitted for publication], two simplified versions of the whole model are proposed. An analytical study of the stability of fixed points as well as the existence of travelling wave-type solutions has been done with both simplified models, providing a significant insight into the behaviour of the model and giving clues to interpret the effectiveness of recently proposed clinical therapies. Furthermore, we also show that, although the mechanical state of the tissue is not directly taken into account in the model equations, it is possible to analyse in detail the effect that mechanical stimulation would have on the predictions of the model. Finally, numerical simulations are also included in the second part of the paper, with the aim of looking into the influence of implant geometry on the osseointegration process.  相似文献   

16.
Although research has been addressed at investigating the effect of specific loading regimes on bone response around the implant, a precise quantitative understanding of the local mechanical response close to the implant site is still lacking. This study was aimed at validating micro-CT-based finite element (μFE) models to assess tissue strains after implant placement in a rat tibia. Small implants were inserted at the medio-proximal site of 8 rat tibiae. The limbs were subjected to axial compression loading; strain close to the implant was measured by means of strain gauges. Specimen-specific μFE models were created and analyzed. For each specimen, 4 different models were created corresponding to different representations of the bone–implant interface: bone and implant were assumed fully osseointegrated (A); a low stiffness interface zone was assumed with thickness of 40 μm (B), 80 μm (C), and 160 μm (D). In all cases, measured and computational strains correlated highly (R 2 = 0.95, 0.92, 0.93, and 0.95 in A, B, C, and D, respectively). The averaged calculated strains were 1.69, 1.34, and 1.15 times higher than the measured strains for A, B, and C, respectively, and lower than the experimental strains for D (factor = 0.91). In conclusion, we demonstrated that specimen-specific FE analyses provide accurate estimates of peri-implant bone strains in the rat tibia loading model. Further investigations of the bone-implant interface are needed to quantify implant osseointegration.  相似文献   

17.
The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation).In order to reach these objectives, a μCT-based finite element model of an oral implant implanted into a Berkshire pig mandible was developed along with a robust software methodology. The finite element mesh of the 3D trabecular bone architecture was generated from the segmentation of μCT scans. The implant was meshed independently from its CAD file obtained from the manufacturer. The meshes of the implant and the bone sample were registered together in an integrated software environment. A series of non-linear contact finite element (FE) analyses considering an axial load applied to the top of the implant in combination with three sets of mechanical properties for the trabecular bone tissue was devised. Complex strain distribution patterns are reported and discussed. It was found that considering the Young’s modulus of the trabecular bone tissue to be 5, 10 and 15 GPa resulted in maximum peri-implant bone microstrains of about 3000, 2100 and 1400. These results indicate that, for the three sets of mechanical properties considered, the magnitude of maximum strain lies within an homeostatic range known to be sufficient to maintain/form bone. The corresponding micro-motions of the implant with respect to the bone microstructure were shown to be sufficiently low to prevent fibrous tissue formation and to favour long-term osseointegration.  相似文献   

18.
Under normal conditions, loading activities result in microdamage in the living skeleton, which is repaired by bone remodeling. However, microdamage accumulation can affect the mechanical properties of bone and increase the risk of fracture. This study aimed to determine the effect of microdamage on the mechanical properties and composition of bone. Fourteen male goats aged 28 months were used in the present study. Cortical bone screws were placed in the tibiae to induce microdamage around the implant. The goats were euthanized, and 3 bone segments with the screws in each goat were removed at 0 days, 21 days, 4 months, and 8 months after implantation. The bone segments were used for observing microdamage and bone remodeling, as well as nanoindentation and bone composition, separately. Two regions were measured: the first region (R1), located 1.5 mm from the interface between the screw hole and bone; and the second region (R2), located>1.5 mm from the bone-screw interface. Both diffuse and linear microdamage decreased significantly with increasing time after surgery, with the diffuse microdamage disappearing after 8 months. Thus, screw implantation results in increased bone remodeling either in the proximal or distal cortical bone, which repairs the microdamage. Moreover, bone hardness and elastic modulus decreased with microdamage repair, especially in the proximal bone tissue. Bone composition changed greatly during the production and repair of microdamage, especially for the C (Carbon) and Ca (Calcium) in the R1 region. In conclusion, the presence of mechanical microdamage accelerates bone remodeling either in the proximal or distal cortical bone. The bone hardness and elastic modulus decreased with microdamage repair, with the micromechanical properties being restored on complete repair of the microdamage. Changes in bone composition may contribute to changes in bone mechanical properties.  相似文献   

19.
K Yamashita  T Takagi 《Acta anatomica》1992,145(4):406-411
Two types of adipose cells were found in the connective tissue on day 7 after bone matrix gelatin (BMG) implantation and an injection of bupivacaine: mature adipose cells with a large lipid droplet (2-140 microns) and immature adipose cells with many small lipid droplets (0.1-2 microns). On day 10 after BMG implantation, typical adipose tissue was observed near the implant. The immature adipose cells had small, spherical mitochondria, glycogen granules and cytoplasmic microvesicles, and they might differentiate from undifferentiated mesenchymal cells in the connective tissue or the peripheral cells around the vessels as a white adipose tissue. These findings suggest that the differentiation of adipose cells in the connective tissue near heterotopic bone formation might be induced not only by mechanical and/or bupivacaine injury, but also by some factor or factors of the BMG.  相似文献   

20.
Good mechanical fixation of an implant to the surrounding bone is important for its longevity, and is influenced by both biological and mechanical factors. This study parametrically evaluates the mechanics of the interface with a computationally efficient analytic structural model of the shear stress field and global shear stiffness of an axially loaded implant. The utility of the analytic model was first established by validating its assumptions with a case-specific finite element model. We then used the analytic model for a sensitivity analysis of the relationship between the pattern of tissue growth and shear properties of the interface for our previously reported loaded in vivo experimental micromotion device. The bone located directly at the implant surface was found to be the most effective site for increasing interface stiffness. This suggests that the implant surface is the most desirable site for bone growth, yet is also the most mechanically challenging environment due to its maximal shear stresses. Thus, these findings support the further investigation of osteo-conductive coatings and other biological stimuli to overcome the challenging mechanics, and to promote bone growth directly at the implant surface. The model also demonstrated that the mechanical contribution to the global implant shear stiffness of a commonly observed isolated sclerotic bone rim is very limited. The results of this sensitivity analysis agree with experimental studies with the micromotion device, and with clinical studies reporting good results with osteo-conductive coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号