共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to assess the relative contributions of lipid peroxidation and cholesterol content to the increase in membrane rigidity observed during senescence. Membrane fluidity was manipulated through exposure to peroxidized or cholesterol-loaded liposomes. Small unilamella liposomes were prepared and either peroxidized by Fe++-ADP-ascorbic acid or loaded with cholesterol. After incorporation of the liposomes into rat liver microsomal membranes, membrane fluidity was quantitated by measuring changes in polarization. Membranes exhibited a greater sensitivity to peroxidation than cholesterol in that incorporation of peroxidized liposomes induced microsomal membrane rigidity substantially more than did cholesterol-loaded liposomes. Thus it is proposed, based on data from the present and earlier studies, that membrane fluidity can be modulated readily by lipid peroxidation of membrane phospholipids, irrespective of the influences of cholesterol. These results support the proposal that alterations of lipid structure are more potent and effective than compositional changes in cholesterol in inducing age-related increases in membrane rigidity. 相似文献
2.
Domenico Lapenna Andrea Mezzetti Sergio De Gioia Sante D. Pierdomenico Franca Daniele Franco Cuccurullo 《Free radical biology & medicine》1995,19(6):849-852
Plasma levels of copper and lipid peroxidation were evaluated in 14 smokers as compared to 14 nonsmokers. Plasma copper concentrations were higher in smokers than in nonsmokers (122.5 ± 19.15 vs. 101.5 ± 16.2 μg/dl, P < .01). Plasma lipoperoxidation, evaluated as fluorescent damage products of lipid peroxidation (FDPL), also was higher in smokers than in nonsmokers (20.35 ± 2.6 vs. 17.1 ± 2.95 units of relative fluorescence/ml, P < .01). A significant and positive correlation between the number of cigarettes smoked, expressed as pack years, and the levels of either FDPL (r = .61, P < .025) or copper (r = .55, P < .05) was found. Moreover, a significant and positive relationship between copper and FDPL values was observed in smokers (r = .64; P < .025), but not in nonsmokers. These data indicate that cigarette smoke-related plasma oxidant load may be partly due to enhanced levels of the prooxidant metal copper, potentially suggesting the supplementation of specific antioxidants (e.g., zinc) to counteract cigarette smoke-induced oxidative stress in smokers. 相似文献
3.
Basu S 《Free radical research》2004,38(2):105-122
Isoprostanes, are a novel group of prostaglandin-like compounds that are biosynthesised from esterified polyunsaturated fatty acid (PUFA) through a non-enzymatic free radical-catalysed reaction. Several of these compounds possess potent biological activity, as evidenced mainly through their pulmonary and renal vasoconstrictive effects, and have short half-lives. It has been shown that isoprostanes act as full or partial agonists through thromboxane receptors. Both human and experimental studies have indicated associations of isoprostanes and severe inflammatory conditions, ischemia-reperfusion, diabetes and atherosclerosis. Reports have shown that F2-isoprostanes are authentic biomarkers of lipid peroxidation and can be used as potential in vivo indicators of oxidant stress in various clinical conditions, as well as in evaluations of antioxidants or drugs for their free radical-scavenging properties.
Higher levels of F2-isoprostanes have been found in the normal human pregnancy compared to non-pregnancy, but their physiological role has not been well studied so far. Since bioactive F2-isoprostanes are continuously formed in various tissues and large amounts of these potent compounds are found unmetabolised in their free acid form in the urine in normal basal conditions with a wide inter-individual variation, their role in the regulation of normal physiological functions could be of further biological interest, but has yet to be disclosed. Their potent biological activity has attracted great attention among scientists, since these compounds are found in humans and animals in both physiological and pathological conditions and can be used as reliable biomarkers of lipid peroxidation. 相似文献
Higher levels of F2-isoprostanes have been found in the normal human pregnancy compared to non-pregnancy, but their physiological role has not been well studied so far. Since bioactive F2-isoprostanes are continuously formed in various tissues and large amounts of these potent compounds are found unmetabolised in their free acid form in the urine in normal basal conditions with a wide inter-individual variation, their role in the regulation of normal physiological functions could be of further biological interest, but has yet to be disclosed. Their potent biological activity has attracted great attention among scientists, since these compounds are found in humans and animals in both physiological and pathological conditions and can be used as reliable biomarkers of lipid peroxidation. 相似文献
4.
Yoshida Y Ito N Shimakawa S Niki E 《Biochemical and biophysical research communications》2003,305(3):747-753
Lipid peroxidation is an old and yet novel subject. It induces membrane disturbance and damage and its products are known to induce the generation of various cytokines and cell signaling. In the present work, the susceptibility and specificity of human plasma lipids to oxidation were studied, aiming specifically at elucidating the effects of oxidation milieu and oxidants. Cholesteryl esters (CEs) and phosphatidylcholines (PCs) were more readily oxidized in plasma than in organic solution under similar conditions. The susceptibilities of PC and free cholesterol (FC) relative to CE to free radical-mediated lipid peroxidation induced by peroxyl radicals and peroxynitrite were smaller in plasma than in organic solution. The higher rate of CE oxidation by free radicals than PC may be accounted for by the physical effects as well as higher content of polyunsaturated lipids in CE than PC. On the contrary, PC was more readily oxidized than CE by lipoxygenases. The lipid hydroperoxides were stable in organic solution but reduced to the corresponding hydroxides in plasma, the rate being much faster for PC hydroperoxides than for CE and FC hydroperoxides. It was confirmed that free radical-mediated oxidation gave both cis,trans and trans,trans, racemic, random hydroperoxides, while that by lipoxygenase gave only regio- and stereo-specific cis,trans-hydroperoxide. 相似文献
5.
Kelly L. Horan Barry S. Lutzke Alex R. Cazers John M. McCall Dennis E. Epps 《Free radical biology & medicine》1994,17(6):587-596
The authors have developed a kinetic method that allows one to obtain relative reactivity constants for lipophilic antioxidants in free radical systems. Two experimental model systems were developed: (a) a methanolic solution using AMVN as the free radical initiator and linoleic acid as the substrate, and (b) a multilamellar vesicle system composed of dilinoleoylphosphatidylcholine and AAPH as the substrate and the initiator, respectively. The use of these two systems allows researchers not only to determine the intrinsic reactivity of a potential antioxidant, but also to evaluate its potency in a membranous system where the contribution of the physical properties of the antioxidant to the inhibition of lipid peroxidation is important. These results show that all antioxidants tested acted in these systems as free radical scavengers, and they validate the synergism between intrinsic scavenging ability and membrane affinity and/or membrane-modifying physical properties in the inhibition of lipid peroxidation. 相似文献
6.
Lipid peroxidation was investigated to evaluate the deleterious effect on tissues by phenylbutazone (PB). PB induced lipid peroxidation of microsomes in the presence of horseradish peroxidase and hydrogen peroxide (HRP-H2O2). The lipid peroxidation was completely inhibited by catalase but not by superoxide dismutase. Mannitol and dimethylsulfoxide had no effect. These results indicated no paticipation of superoxide and hydroxyl radical in the lipid peroxidation. Reduced glutathione (GSH) efficiently inhibited the lipid peroxidation. PB radicals emitted electron spin resonance (ESR) signals during the reaction of PB with HRP-H2O2. Microsomes and arachidonic acid strongly diminished the ESR signals, indicating that PB radicals directly react with unsaturated lipids of microsomes to cause thiobarbituric acid reactive substances. GSH sharply diminished the ESR signals of PB radicals, suggesting that GSH scavenges PB radicals to inhibit lipid peroxidation. Also, 2-methyl-2-nitrosopropan strongly inhibited lipid peroxidation. R-Phycoerythrin, a peroxyl radical detector substance, was decomposed by PB with HRP-H2O2. These results suggest that lipid peroxidation of microsomes is induced by PB radicals or peroxyl radicals, or both. 相似文献
7.
Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression 总被引:4,自引:0,他引:4
Ultraviolet A (UVA) irradiation causes human skin aging and skin cancer at least partially through the activation of matrix metalloproteinases (MMPs). MMP-1, the interstitial collagenase, is responsible for the degradation of collagen and is involved in tumor progression in human skin. The present study uses human skin fibroblast cells (FEK4) to investigate the involvement of lipid peroxidation and the role of peroxides as possible mediators in MMP-1 activation by UVA. Preincubation with the antioxidants butylated hydroxytoluene and Trolox reduced UVA-dependent MMP-1 upregulation, suggesting that peroxidation of membrane lipids is involved. Blocking the iron-driven generation of lipid peroxides and hydroxyl radicals by different iron chelators led to a decrease in UVA-induced MMP-1 mRNA accumulation. Moreover, modulation of glutathione peroxidase activity by use of the specific inhibitor mercaptosuccinate (MS) or by the depletion of glutathione (using buthionine-S, R-sulfoximine, BSO), enhanced the UVA-dependent MMP-1 response. Finally, UVA irradiation generated a significant increase in intracellular peroxide levels which is augmented by pretreatment of the cells with BSO or MS. Our results demonstrate that lipid peroxidation and the production of peroxides are important events in the signalling pathway of MMP-1 activation by UVA. 相似文献
8.
Basal Lipid Peroxidation in Substantia Nigra Is Increased in Parkinson''s Disease 总被引:12,自引:22,他引:12
D. T. Dexter C. J. Carter F. R. Wells F. Javoy-Agid Y. Agid A. Lees† P. Jenner C. D. Marsden† 《Journal of neurochemistry》1989,52(2):381-389
Polyunsaturated fatty acid (PUFA) levels (an index of the amount of substrate available for lipid peroxidation) were measured in several brain regions from patients who died with Parkinson's disease and age-matched control human postmortem brains. PUFA levels were reduced in parkinsonian substantia nigra compared to other brain regions and to control tissue. However, basal malondialdehyde (MDA; an intermediate in the lipid peroxidation process) levels were increased in parkinsonian nigra compared with other parkinsonian brain regions and control tissue. Expressing basal MDA levels in terms of PUFA content, the difference between parkinsonian and control substantia nigra was even more pronounced. Stimulating MDA production by incubating tissue with FeSO4 plus ascorbic acid, FeSO4 plus H2O2, or air alone produced lower MDA levels in the parkinsonian substantia nigra, probably reflecting the lower PUFA content. These results may indicate that an increased level of lipid peroxidation continues to occur in the parkinsonian nigra up to the time of death, perhaps because of continued exposure to excess free radicals derived from some endogenous or exogenous neurotoxic species. 相似文献
9.
Patrik Forsmark-Andre Gustav Dallner Lars Ernster 《Free radical biology & medicine》1995,19(6):749-757
This article is a study of the relationship between lipid peroxidation and protein modification in beef heart submitochondrial particles, and the protective effect of endogenous ubiquinol (reduced coenzyme Q) against these effects. ADP-Fe3· and ascorbate were used to initiate lipid peroxidation and protein modification, which were monitored by measuring TBARS and protein carbonylation, respectively. Endogenous ubiquinone was reduced by the addition of succinate and antimycin. The parameters investigated included extraction and reincorporation of ubiquinone, and comparison of the effect of ubiquinol with those of various antioxidant compounds and enzymes, as well as the iron chelator EDTA. Under all conditions employed there was a close correlation between lipid peroxidation and protein carbonylation, and the inhibition of these effects by endogenous ubiquinol. SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol. Conceivable mechanisms behind the observed oxidative modifications of membrane phospholipids and proteins and of the role of ubiquinol in preventing these effects are considered. 相似文献
10.
Mammalian metallothioneins (MT) have been reported to scavenge free radicals. There is no experimental evidence to show that fish MT has a similar property. In the present study cadmium-induced MT (Cd-MT) from the liver of an Indian freshwater fish Channa punctata Bloch was investigated for its free radical scavenging activity using three different in vitro assays. Exposure to cadmium chloride (0.2 mg/kg body weight; three doses on alternate days) resulted in a marked induction of Cd-MT in liver. Only a single isoform of Cd-MT was found to be induced. Molecular weight of Cd-MT was found to be 14 kDa as deduced by SDS-PAGE analysis. The purified Cd-MT effectively scavenged the following free radicals: superoxide radical (O2*-), 2,2'-azinobis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS*+) and 1,1-diphenyl-picrylhydrazyl radical (DPPH*). The radical scavenging effect was found to be concentration-dependent. Also, the purified MT exhibited an inhibitory effect on ferric nitrilotriacetate (Fe-NTA) induced oxidative DNA damage in vitro. The cysteine residues of MT are proposed to be the main candidate for its radical scavenging activity. Findings of the present study strongly suggest a free radical scavenging role for fish MT. Present study adds to the little existing knowledge about fish MT and its possible biological functions. 相似文献
11.
Milczarek R Sokołowska E Hallmann A Kaletha K Klimek J 《The Journal of steroid biochemistry and molecular biology》2008,110(3-5):230-235
During pregnancy placenta is the most significant source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides and other ROS is often linked to pre-eclampsia. It is already proved that placental endoplasmic reticulum may be an important place of lipid peroxides and superoxide radical production. In the present study we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) inhibit placental aromatase--a key enzyme of estrogen biosynthesis in human placenta. We showed that significant inhibition of this enzyme is caused by small lipid peroxidation (TBARS (thiobarbituric acid-reactive substances)<4nmol/mg microsomal protein (m.p.)). More intensive lipid peroxidation (TBARS>9nmol/mg microsomal protein) diminishes aromatase activity to value being less than 5% of initial value. NADPH- and iron-dependent lipid peroxidation also causes disappearance of cytochrome P450 parallel to observed aromatase activity inhibition. EDTA, alpha-tocopherol, MgCl(2) and superoxide dismutase (SOD) prevent aromatase activity inhibition and cytochrome P450(AROM) degradation. Mannitol and catalase have not effect on TBARS synthesis, aromatase activity and cytochrome P450 degradation. In view of the above we postulate that the inhibition of aromatase activity observed is mainly a consequence of cytochrome P450(AROM) degradation induced by lipid radicals. The role of hydroxyl radical in cytochrome P450 degradation is negligible in our experimental conditions. The results presented here also suggest that the inhibition of aromatase activity can also take place in placenta at in vivo conditions. 相似文献
12.
Ewa Sewerynek Daniela Melchiorri Lidun Chen Russel J. Reiter 《Free radical biology & medicine》1995,19(6):903-909
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin. 相似文献
13.
Samar Basu 《Free radical research》2013,47(2):105-122
Isoprostanes, are a novel group of prostaglandin-like compounds that are biosynthesised from esterified polyunsaturated fatty acid (PUFA) through a non-enzymatic free radical-catalysed reaction. Several of these compounds possess potent biological activity, as evidenced mainly through their pulmonary and renal vasoconstrictive effects, and have short half-lives. It has been shown that isoprostanes act as full or partial agonists through thromboxane receptors. Both human and experimental studies have indicated associations of isoprostanes and severe inflammatory conditions, ischemia-reperfusion, diabetes and atherosclerosis. Reports have shown that F2-isoprostanes are authentic biomarkers of lipid peroxidation and can be used as potential in vivo indicators of oxidant stress in various clinical conditions, as well as in evaluations of antioxidants or drugs for their free radical-scavenging properties.Higher levels of F2-isoprostanes have been found in the normal human pregnancy compared to non-pregnancy, but their physiological role has not been well studied so far. Since bioactive F2-isoprostanes are continuously formed in various tissues and large amounts of these potent compounds are found unmetabolised in their free acid form in the urine in normal basal conditions with a wide inter-individual variation, their role in the regulation of normal physiological functions could be of further biological interest, but has yet to be disclosed. Their potent biological activity has attracted great attention among scientists, since these compounds are found in humans and animals in both physiological and pathological conditions and can be used as reliable biomarkers of lipid peroxidation. 相似文献
14.
The development of a specific, reliable and noninvasive method for measuring oxidative stress in humans is essential for establishing the role of free radicals in human diseases. Currently, accurate techniques to assess oxidant injury in vivo are extremely limited although a number of approaches are being investigated. Of these, the measurement of specific products of nonenzymatic lipid peroxidation, the F2-isoprostanes (F2-IsoPs), appears to be a more accurate marker of oxidative stress in vivo in humans than other available methods. The purpose of this brief review is to acquaint the reader with the IsoPs from a biochemical perspective and to provide information regarding the utility of quantifying these compounds as indicators of oxidant stress. 相似文献
15.
V. Elayne Arterbery William A. Pryor Long Jiang Shelley S. Sehnert W. Michael Foster Ross A. Abrams Jerry R. Williams Moody D. Wharam Jr. Terence H. Risby 《Free radical biology & medicine》1994,17(6):569-576
Total body irradiation (TBI) is used therapeutically for treatment of leukemias and other malignancies of the hemopoietic system. Ionizing radiation produces oxygen free radicals that contribute to cytotoxicity. Breath collected from one patient undergoing therapeutic TBI showed measurable changes in levels of ethane during treatment. Breath ethane is a marker of lipid peroxidation of n-3 fatty acids. The TBI treatment involved 4 days of irradiation. The largest changes in breath ethane occured on Day 2. The increased levels of breath ethane on Day 2 were correlated to clinical manifestations of toxicity. The correlation of the onset of gastrointestinal side effects with higher levels of breath ethane suggests that breath ethane may be a clinically useful measure of the toxicity of various TBI fractionation treatment protocols currently in use at different medical centers. The levels of breath ehtane on the other days of treatment were lower, suggesting that the oxidative-antioxidative balance of the patient may be important in protection against free radical mediated injury. These results for a single patient suggest that breath ethane may be a promising approach to elucidate the role of antioxidants in clinical TBI and should be extended for verification to a larger volunteer patient population. 相似文献
16.
Sharmila Basu-Modak Patrick Lüscher Rex M. Tyrrell 《Free radical biology & medicine》1996,20(7):887-897
Cellular effects of ultraviolet A (UVA) radiation include peroxidation of membrane lipids as well as a decrease in intracellular glutathione. We have investigated whether damage to membrane lipids is involved in the activation of the human heme oxygenase-1 gene by UVA. Irradiation of human skin fibroblasts in the presence of the lipophilic antioxidants, butylated hydroxytoluene and a-tocopherol, enhances the UVA-induced HO-1 mRNA accumulation, suggesting that peroxidation of plasma membrane lipids is not involved. Furthermore, sodium ascorbate, which induces lipid peroxidation mainly in the plasma membrane, induces HO-1 mRNA to low levels only. The decrease in GSH by UVA radiation is not affected by the presence of the lipophilic antioxidants while ascorbate treatment increases the intracellular GSH by twofold above controls. These results indicate that peroxidation of internal membrane lipids, a decrease in the intracellular GSH levels and the integrity of the plasma membrane are all important for the UVA-induction of heme oxygenase-1. Both nonenzymatic as well as enzymatic lipid peroxidation metabolites are inducers of heme oxygenase-1. The nonenzymatic lipid peroxidation product 4-hydroxynonenal induces heme oxygenase-1 mRNA up to 40-fold and the phospholipase metabolites diacylglycerol and arachidonic acid induce this mRNA by three-to sixfold above basal levels. We also demonstrate that the cyclooxygenase metabolites of arachidonic acid are important for the UVA-activation of the heme oxygenase-1 gene. 相似文献
17.
Deiana M Dessi MA Ke B Liang YF Higa T Gilmour PS Jen LS Rahman I Aruoma OI 《Biochemical and biophysical research communications》2002,296(5):1148-1151
18.
A highly sensitive quantitative LC-MS/MS method was developed for measuring urinary malondialdehyde (MDA). With the use of an isotope internal standard and online solid-phase extraction, urine samples can be directly analyzed within 10 min after 2,4-dinitrophenylhydrazine (DNPH) derivatization. The detection limit was estimated as 0.08 pmol. This method was further applied to assess the optimal addition of DNPH for derivatization and to measure urinary MDA in 80 coke oven emission (COE)-exposed and 67 nonexposed workers. Derivatization optimization revealed that to achieve complete derivatization reaction, an excess of DNPH is required (DNPH/MDA molar ratio: 893-8929) for urine samples that is about 100 times higher than that of MDA standard solutions (molar ratio: 10-80). Meanwhile, the mean urinary concentrations of MDA in COE-exposed workers were significantly higher than those in nonexposed workers (0.23±0.17 vs 0.14±0.05 μmol/mmol creatinine, P<0.005). Urinary MDA concentrations were also significantly associated with the COE (P<0.005) and smoking exposure (P<0.05). Taken together, this method is capable of routine high-throughput analysis and accurate quantification of MDA and would be useful for assessing the whole-body burden of oxidative stress. Our findings, however, raise the issue that derivatization optimization should be performed before it is put into routine biological analysis. 相似文献
19.
Campo GM Avenoso A Campo S D'Ascola A Ferlazzo AM Calatroni A 《Free radical research》2004,38(6):601-611
Glycosaminoglycans (GAGs), components of extracellular matrix, are thought to play important roles in cell proliferation and differentiation in the repair process of injured tissue. Oxidative stress is one of the most frequent causes of tissue and cell injury and the consequent lipid peroxidation is the main manifestation of free radical damage. It has been found to play an important role in the evolution of cell death. Since several reports have shown that hyaluronic acid (HYA) and chondroitin-4-sulphate (C4S) are able to inhibit lipid peroxidation during oxidative stress, We investigated the antioxidant capacity of these GAGs in reducing oxidative damage in fibroblast cultures.
Free radicals production was induced by the oxidizing system employing iron (Fe2+) plus ascorbate. We evaluated cell death, membrane lipid peroxidation, DNA damage, protein oxidation, hydroxyl radical (OH•) generation and endogenous antioxidant depletion in human skin fibroblast cultures.
The exposition of fibroblasts to FeSO4 and ascorbate caused inhibition of cell growth and cell death, increased OH• production determined by the aromatic trap method; furthermore it caused DNA strand breaks and protein oxidation as shown by the DNA fragments analysis and protein carbonyl content, respectively. Moreover, it enhanced lipid peroxidation evaluated by the analysis of conjugated dienes (CD) and decreased antioxidant defenses assayed by means of measurement of superoxide dismutase (SOD) and catalase (CAT) activities.
When fibroblasts were treated with two different doses of HYA or C4S a protective effect, following oxidative stress induction, was shown. In fact these GAGs were able to limit cell death, reduced DNA fragmentation and protein oxidation, decreased OH• generation, inhibited lipid peroxidation and improved antioxidant defenses.
Our results confirm the antioxidant activity of HYA and C4S and this could represent a useful step in the understanding of the exact role played by GAGs in living organisms. 相似文献
Free radicals production was induced by the oxidizing system employing iron (Fe2+) plus ascorbate. We evaluated cell death, membrane lipid peroxidation, DNA damage, protein oxidation, hydroxyl radical (OH•) generation and endogenous antioxidant depletion in human skin fibroblast cultures.
The exposition of fibroblasts to FeSO4 and ascorbate caused inhibition of cell growth and cell death, increased OH• production determined by the aromatic trap method; furthermore it caused DNA strand breaks and protein oxidation as shown by the DNA fragments analysis and protein carbonyl content, respectively. Moreover, it enhanced lipid peroxidation evaluated by the analysis of conjugated dienes (CD) and decreased antioxidant defenses assayed by means of measurement of superoxide dismutase (SOD) and catalase (CAT) activities.
When fibroblasts were treated with two different doses of HYA or C4S a protective effect, following oxidative stress induction, was shown. In fact these GAGs were able to limit cell death, reduced DNA fragmentation and protein oxidation, decreased OH• generation, inhibited lipid peroxidation and improved antioxidant defenses.
Our results confirm the antioxidant activity of HYA and C4S and this could represent a useful step in the understanding of the exact role played by GAGs in living organisms. 相似文献
20.
Lipid peroxidation as molecular mechanism of liver cell injury during reperfusion after ischemia 总被引:7,自引:0,他引:7
W.Rodney Mathews David M. Guido Michael A. Fisher Hartmut Jaeschke 《Free radical biology & medicine》1994,16(6):763-770
The pathophysiological importance of reactive oxygen species has been extensively documented in the pathogenesis of hepatic ischema-reperfusion injury. Kupffer cells and neutrophils were identified as the dominant sources of the postischemic oxidant stress. To test the hypothesis that a direct free radical-mediated injury mechanism (lipid peroxidation; LPO) may be involved in the pathogenesis, highly sensitive and specific parameters of LPO, i.e., hydroxy-eicosatetraenoic acids (HETES), and F2-isoprostanes, were determined by gas chromatographic-mass spectrometric analysis in liver tissue and plasma during 45 min of hepatic ischemia and up to 24 h of reperfusion. A significant 60–250% increase of F2-isoprostane levels in plasma was found at all times during reperfusion; the HETE content increased only significantly at 1 h of reperfusion and in severely necrotic liver tissue at 24 h with increases between 90–320%. On the other hand, in a model of LPO-induced liver injury (infusion of 0.8 μmol tert-butylhydroperoxide/min/g liver), the hepatic HETE content increased two to fourfold over baseline values at 45 min, i.e., before liver injury. A further increase to 12- to 30-fold of baseline was observed during moderate liver injury. Based on these quantitative comparisons of LPO and liver injury, it seems highly unlikely that LPO is the primary mechanism of parenchymal cell injury during reperfusion, although it cannot be excluded that LPO may be important as a damaging mechanism in a limited compartment of the liver, e.g., endothelial cells, close to the sources of reactive oxygen, e.g., Kupffer cells and neutrophils. 相似文献