首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Investigations of the mechanism of the non-oxidative segment of the pentose phosphate cycle in isolatd hepatocytes by prediction-labelling studies following the metabolism of [2-14C]-, [5-14C]- and [4,5,6-14C]glucose are reported. The 14C distribution patterns in glucose 6-phosphate show that the reactions of the L-type pentose pathway in hepatocytes. 2. Estimates of the quantitative contribution of the L-type pentose cycle are the exclusive form of the pentose cycle to glucose metabolism have been made. The contribution of the L-type pentose cycle to the metabolism of glucose lies between 22 and 30% in isolated hepatocytes. 3. The distribution of 14C in the carbon atoms of glucose 6-phosphate following the metabolism of [4,5,6-14C]- and [2-14C]glucose indicate that gluconeogenesis from triose phosphate and non-oxidative formation of pentose 5-phosphate do not contribute significantly to randomization of 14C in isolated hepatocytes. The transaldolase exchange reaction between fructose 6-phosphate and glyceraldehyde 3-phosphate is very active in these cells.  相似文献   

2.
1. The reactions of the pentose phosphate cycle were investigated by the intraportal infusion of specifically labelled [(14)C]glucose or [(14)C]ribose into the liver of the anaesthetized rabbit. The sugars were confined in the liver by haemostasis and metabolism was allowed to proceed for periods up to 5min. Metabolism was assessed by measuring the rate of change of the specific radioactivity of CO(2), the carbon atoms of glucose 6-phosphate, fructose 6-phosphate and tissue glucose. 2. The quotient oxidation of [1-(14)C]glucose/oxidation of [6-(14)C]glucose as measured by the incorporation into respiratory CO(2) was greater than 1.0 during most of the time-course and increased to a maximum of 3.1 but was found to decrease markedly upon application of a glucose load. 3. The estimate of the pentose phosphate cycle from C-1/C-2 ratios generally increased during the time-course, whereas the estimate of the pentose phosphate cycle from C-3/C-2 ratios varied depending on whether the ratios were measured in glucose or hexose 6-phosphates. 4. The distribution of (14)C in hexose 6-phosphate after the metabolism of [1-(14)C]ribose showed that 65-95% of the label was in C-1 and was concluded to have been the result of a rapidly acting transketolase exchange reaction. 5. Transaldolase exchange reactions catalysed extensive transfer of (14)C from [2-(14)C]glucose into C-5 of the hexose 6-phosphates during the entire time-course. The high concentration of label in C-4, C-5 and C-6 of the hexose 6-phosphates was not seen in tissue glucose in spite of an unchanging rate of glucose production during the time-course. 6. It is concluded that the reaction sequences catalysed by the pentose phosphate pathway enzymes do not constitute a formal metabolic cycle in intact liver, neither do they allow the definition of a fixed stoicheiometry for the dissimilation of glucose.  相似文献   

3.
1. Glucose 5-phosphate was synthesized from ribose 5-phosphate by an enzyme extract prepared from an acetone-dried powder of rat liver. Three rates of ribose 5-phosphate utilization were observed during incubation for 17 h. An analysis of intermediates and products formed throughout the incubation revealed that as much as 20% of the substrate carbon could not be accounted for. 2. With [1-14C]ribose 5-phosphate as substrate, the specific radioactivity of [14C]glucose 6-phosphate formed was determined at 1, 2, 5 and 30 min and 3, 8 and 17 h. It increased rapidly to 1.9-fold the initial specific radioactivity of [1-14C]ribose 5-phosphate at 3 h and then decreased to a value approximately equal to that of the substrate at 6 h, and finally at 17 h reached a value 0.8-fold that of the initial substrate [1-14C]ribose 5-phosphate. 3. The specific radioactivity of [14C]ribose 5-phosphate decreased to approx. 50% of its inital value during the first 3 h of the incubation and thereafter remained unchanged. 4. The distribution of 14C in the six carbon atoms of [14C]glucose 6-phosphate formed from [1-14C]ribose 5-phosphate at 1, 2, 5 and 30 min and 3, 8 and 17 h was determined. The early time intervals (1--30 min) were characterized by large amounts of 14C in C-2 and in C-6 and with C-1 and C-3 being unlabelled. In contrast, the later time intervals (3--17 h) were characterized by the appearance of 14C in C-1 and C-3 and decreasing amounts of 14C in C-2 and C-6. 5. It is concluded that neither the currently accepted reaction sequence for the non-oxidative pentose phosphate pathway nor the 'defined' pentose phosphate-cycle mechanism can be reconciled with the labelling patterns observed in glucose 6-phosphate formed during the inital 3 h of the incubation.  相似文献   

4.
1. Expressions are derived for the steady-state measurement of the quantitative contribution of the liver-type pentose phosphate cycle to glucose metabolism by tissues. One method requires the metabolism of [5-14C]glucose followed by the isolation and degradation of glucose 6-phosphate. The second procedure involves the metabolism of [2-14C]glucose and the isolation and degradation of a triose phosphate derivative, usually lactate or glycerol. 2. Measurements of 14C in C-2 and C-5 of glucose 6-phosphate are required and the values of the C-2/C-5 ratios can be used to calculate the quantitative contribution of the L-type pentose cycle in all tissues. 3. The measurement of 14C in C-1, C-2 and C-3 of triose phosphate derivatives can be used to calculate the quantitative contribution of the L-type pentose cycle relative to glycolysis. 4. The effect of transaldolase and transketolase exchange reactions, reactions of gluconeogenesis and non-oxidative formation of pentose 5-phosphate, isotopic equilibration of triose phosphate pools and isotopic equilibration of fructose 6-phosphate and glucose 6-phosphate, which could interfere with a clear interpretation of the data using [2-14C]- and [5-14C]glucose are discussed.  相似文献   

5.
[1-14C] Xylitol was used as substrate for isolated liver parenchymal cells from fasted rats or hamsters, and the glucose formed was isolated and degraded. Over 90% of the total radioactivity was in carbons 1 and 3, and the ratio of specific activity of C-1 to that of C-3 was only slightly under two, the expected ratio for the classical mechanism of the non-oxidative pentose phosphate pathway.  相似文献   

6.
Compartmentation of glucose 6-phosphate in hepatocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Rat hepatocytes were incubated with 14C-labelled hexoses, and the specific radioactivities of glucose 6-phosphate, glucose 1-phosphate and fructose 6-phosphate were determined. (1) When suspensions of freshly isolated hepatocytes were incubated with [14C]glucose, the specific radioactivities of glucose 1-phosphate and fructose 6-phosphate were severalfold higher than that of glucose 6-phosphate. The ratios of the specific radioactivities decreased with time of incubation. These relationships were also found when incubations were carried out with primary cultures of rat hepatocytes or with crude homogenates of hepatocytes, but not with isolated nuclei. (2) When cells were incubated with [14C]fructose, the ratios of the specific radioactivities were higher than with [14C]glucose, and also decreased with time. (3) Paired incubations were carried out with a mixture of galactose and fructose, with one or other sugar being labelled with 14C. The specific radioactivity of glucose released into the medium was greater than that of glucose 6-phosphate when fructose was labelled, but not when galactose was labelled. Furthermore, glucose 6-phosphate and glucose in the medium differed with regard to the distribution of 14C between C-1 and C-6. These results are interpreted as evidence that glucose 6-phosphate in hepatocytes does not exist as a homogeneous pool, but that subcompartments exist which are associated with glucose phosphorylation, gluconeogenesis and glycogenolysis.  相似文献   

7.
The complete reaction sequence of the pentose pathway in vitro was studied by incubating [1-14C] ribose 5-phosphate with rat liver enzyme preparation and assessed by both the rate and extent of formation of the glucose 6-P product. The reactions formed, as intermediates, the 1,8-bisphosphates of D-glycero D-ido octulose (D-g D-i Oct) and D-glycero D-altro octulose, both heavily labelled at C-4 with 14C isotope during the 12h incubation. The formation of the octulose phosphates and the specificity of their isotopic labelling confirms an important prediction of, and contribution by reactions of the L-type pentose phosphate pathway (L-PP) in liver in vitro. Infusion in situ of [6-14C] glucose into the liver of the anaesthetized rabbit resulted in the formation of high specific activity [8-14C] D-g D-i Oct 1,8-P2. The specificity of labelling indicates that the octulose intermediate is formed according to the options of the L-PP mechanism of glucose metabolism in intact liver.  相似文献   

8.
1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in vitro was measured and contrasted with the value for the pathway acting in the forward direction. The initial specific rates of the pentose pathway reactions in vitro for the reverse and forward directions are measured. 7. The study which includes carbon balance, time course changes and 14C prediction labelling experiments reports a comprehensive investigation of the mechanism of the pentose pathway acting reversibly.  相似文献   

9.
Pentose cycle and reducing equivalents in rat mammary-gland slices   总被引:14,自引:13,他引:1       下载免费PDF全文
1. Slices of mammary gland of lactating rats were incubated with glucose labelled uniformly with (14)C and in positions 1, 2, 3 and 6, and with (3)H in all six positions. Glucose carbon atoms are incorporated into CO(2), fatty acids, lipid glycerol, the glucose and galactose moieties of lactose, lactate, soluble amino acids and proteins. C-3 of glucose appears in fatty acids. The incorporation of (3)H into fatty acids is greatest from [3-(3)H]glucose. (3)H from [5-(3)H]glucose appears, apart from in lactose, nearly all in water. 2. The specific radioactivity of the galactose moiety of lactose from [1-(14)C]- and [6-(14)C]-glucose was less, and that from [2-(14)C]- and [3-(14)C]-glucose more, than that of the glucose moiety. There was no randomization of carbon atoms in the glucose moiety, but it was extensive in galactose. 3. The pentose cycle was calculated from (14)C yields in CO(2) and fatty acids, and from the degradation of galactose from [2-(14)C]glucose. A method for the quantitative determination of the contribution of the pentose cycle, from incorporation into fatty acids from [3-(14)C]glucose, is derived. The rate of the reaction catalysed by hexose 6-phosphate isomerase was calculated from the randomization pattern in galactose. 4. Of the utilized glucose, 10-20% is converted into lactose, 20-30% is metabolized via the pentose cycle and the rest is metabolized via the Embden-Meyerhof pathway. About 10-15% of the triose phosphates and pyruvate is derived via the pentose cycle. 5. The pentose cycle is sufficient to provide 80-100% of the NADPH requirement for fatty acid synthesis. 6. The formation of reducing equivalents in the cytoplasm exceeds that required for reductive biosynthesis. About half of the cytoplasmic reducing equivalents are probably transferred into mitochondria. 7. In the Appendix a concise derivation of the randomization of C-1, C-2 and C-3 as a function of the pentose cycle is described.  相似文献   

10.
A method for the determination of substrate flux through the pentose cycle was developed employing [1-14C]glucose in experiments with perfused rat livers. The method consists first of a kinetic analysis which differentiates between the production of 14CO2 from [1-14C]glucose via the pentose cycle and via the citrate cycle and, second of a calculation of the specific radioactivity of the hexose monophosphate pool from measured rates of glycolysis and the specific radioactivity of lactate released into the perfusate. The method was validated by experiments comparing the results of tracer infusions with [1-14C]glucose, [6-14C]glucose and [3-14C]pyruvate. In livers from fed rats perfused with 10 mM glucose, the rate of substrate flux through the pentose cycle was around 0.2 mumol X min-1 X g-1; it was about 20% of the substrate flux via glycolysis. The kinetic data were inconsistent with the existence of an L-type pentose cycle in liver.  相似文献   

11.
1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate.  相似文献   

12.
Cells were grown in batch culture on a mixture of 50 mM glucose and fructose as the carbon source; either the glucose or the fructose was [1-13C]-labelled. In order to investigate the uptake and conversion of glucose and fructose during long-term labelling experiments in cell suspensions of Daucus carota L., samples were taken every 2 d during a 2 week culture period and sucrose and starch were assayed by means of HPLC and 13C-nuclear magnetic resonance. The fructose moieties of sucrose had a lower labelling percentage than the glucose moieties. Oxidative pentose phosphate pathway activity in the cytosol is suggested to be responsible for this loss of label of especially C-1 carbons. A combination of oxidative pentose phosphate pathway activity, a relatively high activity of pathway to sucrose synthesis and a slow equilibration between glucose-6-phosphate and fructose-6-phosphate could explain these results. Starch contained glucose units with a much lower labelling percentage than glucose moieties of sucrose: it was concluded that a second, plastid-localized, oxidative pentose phosphate pathway was responsible for removal of C-1 carbons of the glucosyl units used for synthesis of starch. Redistribution of label from [1-13C]-hexoses to [6-13C]-hexoses also occurred: 18-45% of the label was found at the C-6 carbons. This is a consequence of cycling between hexose phosphates and those phosphates in the cytosol catalysed by PFP. The results indicate that independent (oxidative pentose phosphate pathway mediated) sugar converting cycles exist in the cytosol and plastid.Key words: Daucus carotaL., cell suspensions, carbon-13 nuclear magnetic resonance, 13C-NMR, carbohydrate cycling, oxidative pentose phosphate pathway, plastid.   相似文献   

13.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

14.
The phenomenon of "pyruvate recycling" is demonstrated in perfused rat liver, rabbit liver in situ and in Morris Hepatoma 5123TC cells and quantitatively measured using [2-14C]pyruvate and the method of Friedmann et al. (1971). Various metabolites, viz. lactate, DHAP, glucose, glucose 6-P and fructose 6-P were isolated and degraded following the metabolism of [2-14C]pyruvate and [2-14C]glycerol in order to assess the 14C-distributions imparted by "pyruvate recycling" reactions. The labelling of DHAP, lactate, glucose and glucose 6-P showed 14C randomizations consistent with the operation and the quantitative extent of "pyruvate recycling". These findings support the proposal that the actions of "pyruvate recycling" may account for the failure to find significant levels of 14C isotope at C-1 of glucose 6-P following the metabolism of [4,5,6-14C]- or [6-14C]glucose by L-type pentose pathway metabolism in aerobic intact tissues. "Pyruvate recycling" diminishes the measured value of the L-type pentose cycle in intact tissues and qualifies one of the mechanistic predictions of the L-type pentose pathway which was unravelled by tracing its reactions with labelled ribose 5-P and liver enzymes (Horecker et al., 1954; Williams et al., 1978a,b) in vitro. The demonstration of an association of L-type pentose pathway reactions with "pyruvate recycling" by way of the common reactions of their triose-P intermediates qualifies the superficial acceptance of the predictions of the L-type pathway in vitro for the distribution of isotopic labels by aerobic tissues in vivo.  相似文献   

15.
Designing new drugs that inhibit the biosynthesis of the D-arabinan moiety of the mycobacterial cell wall arabinogalactan is one important basic approach for treatment of mycobacterial diseases. However, the biosynthetic origin of the D-arabinosyl monosaccharide residues themselves is not known. To obtain information on this issue, mycobacteria growing in culture were fed glucose labeled with 14C or 3H in specific positions. The resulting radiolabeled cell walls were isolated and hydrolyzed, the arabinose and galactose were separated by high-pressure liquid chromatography, and the radioactivity in each sugar was determined. [U-14C]glucose, [6-3H]glucose, [6-14C]glucose, and [1-14C]glucose were all converted to cell wall arabinosyl residues with equal retention of radioactivity. The positions of the labeled atoms in the arabinose made from [1-14C]glucose and [6-3H]glucose were shown to be C-1 and H-5, respectively. These results demonstrated that the arabinose carbon skeleton is formed via the nonoxidative pentose shunt and not via hexose decarboxylation or via triose condensations. Since the pentose shunt product, ribulose-5-phosphate, is converted to arabinose-5-phosphate as the first step in 3-keto-D-manno-octulosonic acid biosynthesis by gram-negative bacteria, such a conversion was then searched for in mycobacteria. However, cell-free enzymatic analysis using both phosphorous nuclear magnetic resonance spectrometry and colorimetric methods failed to detect the conversion. Thus, the conversion of the pentose shunt intermediates to the D-arabino stereochemistry is not via the expected isomerase but rather must occur via novel metabolic transformations.  相似文献   

16.
The pentose cycle and insulin release in mouse pancreatic islets   总被引:35,自引:17,他引:18  
1. Rates of insulin release, glucose utilization (measured as [(3)H]water formation from [5-(3)H]glucose) and glucose oxidation (measured as (14)CO(2) formation from [1-(14)C]- or [6-(14)C]-glucose) were determined in mouse pancreatic islets incubated in vitro, and were used to estimate the rate of oxidation of glucose by the pentose cycle pathway under various conditions. Rates of oxidation of [U-(14)C]ribose and [U-(14)C]xylitol were also measured. 2. Insulin secretion was stimulated fivefold when the medium glucose concentration was raised from 3.3 to 16.7mm in the absence of caffeine; in the presence of caffeine (5mm) a similar increase in glucose concentration evoked a much larger (30-fold) increase in insulin release. Glucose utilization was also increased severalfold as the intracellular glucose concentration was raised over this range, particularly between 5 and 11mm, but the rate of oxidation of glucose via the pentose cycle was not increased. 3. Glucosamine (20mm) inhibited glucose-stimulated insulin release and glucose utilization but not glucose metabolism via the pentose cycle. No evidence was obtained for any selective effect on the metabolism of glucose via the pentose cycle of tolbutamide, glibenclamide, dibutyryl 3':5'-cyclic AMP, glucagon, caffeine, theophylline, ouabain, adrenaline, colchicine, mannoheptulose or iodoacetamide. Phenazine methosulphate (5mum) increased pentose-cycle flux but inhibited glucose-stimulated insulin release. 4. No formation of (14)CO(2) from [U-(14)C]ribose could be detected: [U-(14)C]xylitol gave rise to small amounts of (14)CO(2). Ribose and xylitol had no effect on the rate of oxidation of glucose; ribitol and xylitol had no effect on the rate of glucose utilization. Ribose, ribitol and xylitol did not stimulate insulin release under conditions in which glucose produced a large stimulation. 5. It is concluded that in normal mouse islets glucose metabolism via the pentose cycle does not play a primary role in insulin-secretory responses.  相似文献   

17.
Estimation of the pentose cycle in the perfused cow''s udder   总被引:4,自引:3,他引:1       下载免费PDF全文
1. The distributions of (14)C have been compared in the glucose and galactose moieties of lactose obtained from cows' udders perfused with blood containing [1-(14)C]-, [2-(14)C]- and [6-(14)C]-glucose. The (14)C of the glucose moiety was found in the same position as that of the administered glucose, but in the galactose moiety the (14)C from [2-(14)C]glucose was extensively randomized into positions 1 and 3. It is concluded that the glucose moiety arose from free glucose and the galactose moiety from hexose phosphate intermediates and that the latter reflected the randomization occurring through reactions of the pentose cycle. 2. The proportion of the glucose metabolized via the pentose cycle for those cells making lactose was estimated from the distribution of (14)C in the galactose moiety and found to be about 23% in one experiment and 30% in another experiment. 3. The yield and distribution of (14)C were determined in the glycerol of fat from the tissue in experiments with [2-(14)C]- and [6-(14)C]-glucose. There was a greater randomization of (14)C in the glycerol than in C-1, C-2 and C-3 of the galactose moiety of lactose. The ratio of the yield of (14)C in the glycerol from [2-(14)C]glucose to that of [6-(14)C]glucose was very low and from this ratio it was calculated that less than 10% of the glucose was metabolized by the Embden-Meyerhof pathway and approx. 60-70% was converted into lactose. 4. [6-(14)C]Glucose and [6-(3)H]glucose were used to determine whether the (3)H at the C-6 position remained stable during its conversion into glyceride of fat from the tissue. Twenty-seven per cent of the (3)H was labilized during this conversion. Therefore it was not possible to use [2-(14)C]glucose and [6-(3)H]glucose in a single experiment to measure the relative conversion of the C-2 and C-6 positions of glucose to glycerol.  相似文献   

18.
Glucose metabolism in normal and virus-transformed chick embryo fibroblast cells in culture was observed by allowing the cells to metabolize [U-14C]glucose plus glucose labeled with tritium in the C-1, C-3, and C-6 positions. Similarities and differences between normal and transformed cells were observed and measured. Both normal and transformed cells are found to metabolize about 20% of the glucose via the oxidative pentose phosphate cycle, with the rates being about twice as much for transformed cells as for normal cells under the chosen conditions. Nevertheless, the ratio of glucose metabolized via oxidative pentose cycle to the net flow of that metabolized directly to fructose 6-phosphate is about the same in normal and transformed cells. Although the rate of flow of [14C]glucose into the tricarboxylic acid cycle intermediates and amino acids derived from them appears to be the same in normal and transformed cells, the rate of tritium incorporation from H3HO into these intermediates seems to be much higher in normal cells.  相似文献   

19.
The pathways of glycogen synthesis from glucose were studied using double-isotope procedures in 18-day cultured foetal-rat hepatocytes in which glycogenesis is strongly stimulated by insulin. When the medium containing 4 mM-glucose was supplemented with [2-3H,U-14C]glucose or [3-3H,U-14C]glucose, the ratios of 3H/14C in glycogen relative to that in glucose were 0.23 +/- 0.04 (n = 6) and 0.63 +/- 0.09 (n = 8) respectively after 2 h. This indicates that more than 75% of glucose was first metabolized to fructose 6-phosphate, whereas 40% reached the step of the triose phosphates prior to incorporation into glycogen. The stimulatory effect of 10 nM-insulin on glycogenesis (4-fold) was accompanied by a significant increase in the (3H/14C in glycogen)/(3H/14C in glucose) ratio with 3H in the C-2 position (0.29 +/- 0.05, n = 6, P less than 0.001) or in the C-3 position (0.68 +/- 0.09, n = 8, P less than 0.01) of glucose, whereas the effect of a 12 mM-glucose load (3.5-fold) did not alter these ratios. Fructose (4 mM) displaced [U-14C]glucose during labelling of glycogen in the presence and absence of insulin by 50 and 20% respectively, and produced under both conditions a similar increase (45%) in the (3H/14C in glycogen)/(3H/14C in glucose) ratio when 3H was in the C-2 position. 3-Mercaptopicolinate (1 mM), an inhibitor of gluconeogenesis from lactate/pyruvate, further decreased the already poor labelling of glycogen from [U-14C]alanine, whereas it increased both glycogen content and incorporation of label from [U-14C]serine and [U-14C]glucose with no effect on the relative 3H/14C ratios in glycogen and glucose with 3H in the C-3 position of glucose. These results indicate that an alternative pathway in addition to direct glucose incorporation is involved in glycogen synthesis in cultured foetal hepatocytes, but that insulin preferentially favours the classical direct route. The alternative foetal pathway does not require gluconeogenesis from pyruvate-derived metabolites, contrary to the situation in the adult liver.  相似文献   

20.
The colonic cells of the large intestine are one of the most proliferative tissues of the animal body. The pentose pathway has an essential role in cell division and growth being the only pathway forming ribose 5-P necessary for all nucleotide and nucleic acid sunthesis. The pentose pathway may also provide reducing potential as NADPH for biosynthesis and C-3- C-8 glycolyl compounds. The maximum catalytic capacities of the reactions of the non-oxidative pentose pathway for the conversion of ribose 5-P to hexose and triose phosphates by the proximal and distal colon under feeding and starvation regimes are among the highest in the animal body. The qualitative presence of the oxidative pentose pathway was assessed by measurement of the C-1/C-6 ratio value of 1.67-1.82. Enzymes of the F-type and L-type pentose pathways are present in colonocytes and their maximum catalytic activities in colonocyte cytosol are reported. The contribution of the F-type pentose cycle to the total glucose metabolism of colonocytes, measured by the specific yield method, is negligibly low (approximately 1.5%). Colonic epithelial cells use glucose at a high rate (7.1 +/- 0.33 mumol min-1g-1 dry wt) and 79% of the glucose is converted to lactate. Arabinose 5-P has an intermediary role in the formation of keto pentose, sedoheptulose and hexose phosphates from ribose 5-P by colonocyte cytosol. The intermediary and reaction products of [1-13C] ribose 5-P dissimilation by colonocytes is investigated by 13C NMR spectroscopy. The 13C positional isotope distributions show labelling of C-1 and C-3 of hexose 6-phosphates consistent with either the theoretical predictions of the F-type pentose pathway or of the activities of exchange reactions catalysed by transketolase and/or transaldolase. Measurements of exchange reactions showed that the C-1/C-3 labelling of these compounds is mostly, if not wholly, attributable to exchange catalysis by these group transferring enzymes. The results suggest that the F-type PC has little role in the glucose metabolism of colonocytes and pentose phosphate formation may thus occur by a contribution (approx 20% of the total glucose metabolism) by the alternate L-type pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号