首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Autophagy as a conserved catabolic pathway can respond to reactive oxygen species (ROS) and plays an important role in degrading oxidized proteins in plants under various stress conditions. However, how ROS regulates autophagy in response to oxidative stresses is largely unknown. Here, we show that autophagy-related protein 3 (ATG3) interacts with the cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) to regulate autophagy in Nicotiana benthamiana plants. We found that oxidative stress inhibits the interaction of ATG3 with GAPCs. Silencing of GAPCs significantly activates ATG3-dependent autophagy, while overexpression of GAPCs suppresses autophagy in N. benthamiana plants. Moreover, silencing of GAPCs enhances N gene-mediated cell death and plant resistance against both incompatible pathogens Tobacco mosaic virus and Pseudomonas syringae pv tomato DC3000, as well as compatible pathogen P. syringae pv tabaci. These results indicate that GAPCs have multiple functions in the regulation of autophagy, hypersensitive response, and plant innate immunity.  相似文献   

4.
In this article, we show that the endoplasmic reticulum (ER) in Arabidopsis thaliana undergoes morphological changes in structure during ER stress that can be attributed to autophagy. ER stress agents trigger autophagy as demonstrated by increased production of autophagosomes. In response to ER stress, a soluble ER marker localizes to autophagosomes and accumulates in the vacuole upon inhibition of vacuolar proteases. Membrane lamellae decorated with ribosomes were observed inside autophagic bodies, demonstrating that portions of the ER are delivered to the vacuole by autophagy during ER stress. In addition, an ER stress sensor, INOSITOL-REQUIRING ENZYME-1b (IRE1b), was found to be required for ER stress–induced autophagy. However, the IRE1b splicing target, bZIP60, did not seem to be involved, suggesting the existence of an undiscovered signaling pathway to regulate ER stress–induced autophagy in plants. Together, these results suggest that autophagy serves as a pathway for the turnover of ER membrane and its contents in response to ER stress in plants.  相似文献   

5.
A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD.In response to the constant attack by microbial pathogens, plants have developed defense mechanisms to protect themselves against harmful diseases caused by various pathogens. Plants primarily rely on two layers of innate immunity to cope with microbial pathogens (Jones and Dangl, 2006). The first layer of plant immunity, which is triggered by pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin, lipopolysaccharides, and fungal chitin, is designated PAMP-triggered immunity (PTI; Boller and He, 2009). Because pathogens have evolved to overcome PTI, plants have developed a second layer of immunity, referred to as effector-triggered immunity (ETI; Dodds and Rathjen, 2010). ETI depends on specific interactions between plant Resistance proteins and pathogen effectors and is often associated with a form of programmed cell death (PCD) termed the hypersensitive response (HR), which inhibits pathogen growth (Coll et al., 2011).Plants use PCD to regulate developmental and defense responses. In addition to pathogen attack, many abiotic stress factors such as heat and ozone exposure elicit PCD in plants (Hayward and Dinesh-Kumar, 2011). PCD also occurs during various developmental processes, including endosperm development, tracheary element (TE) differentiation, female gametophyte differentiation, leaf abscission, and senescence (Kuriyama and Fukuda, 2002; Gunawardena, 2008). Recently, plant PCD has been classified into two types, “autolytic” PCD and “nonautolytic” PCD, on the basis of the presence or absence of rapid cytoplasm clearance after tonoplast rupture, respectively (van Doorn et al., 2011). Autolytic PCD, which mainly occurs during plant development, falls under “autophagic” PCD in animals because it is associated with the accumulation of autophagy-related structures in the cytoplasm. Some forms of HR PCD classified as nonautolytic PCD in plants are accompanied by increased vacuolization, indicating the progress of autophagy, and therefore can be placed under autophagic PCD (Hara-Nishimura et al., 2005; Hatsugai et al., 2009).Autophagy is an intracellular process in which double membrane-bound autophagosomes enclose cytoplasmic components and damaged or toxic materials and target them to the vacuole or lysosome for degradation (Chung, 2011). In plants, autophagy plays important roles in the responses to nutrient starvation, senescence, and abiotic and biotic stresses (Liu et al., 2005; Xiong et al., 2005, 2007; Bassham, 2007; Hofius et al., 2009). Accumulating evidence indicates that autophagy regulates immune responses in both animals and plants. Autophagy is essential for the direct elimination of pathogens in mammalian systems (Levine et al., 2011). Invading bacteria and viruses are targeted to autophagosomes and then delivered to the lysosome for degradation in a process called xenophagy (Levine, 2005). In addition to its function in directly killing pathogens, xenophagic degradation can provide microbial antigens for major histocompatibility complex class II presentation to the innate and adaptive immune systems (Levine, 2005; Schmid and Münz, 2007). Furthermore, the human surface receptor CD46 was shown to directly induce autophagy through physical interaction with the autophagic machinery (Joubert et al., 2009). The role of autophagy in plant basal immunity to virulent pathogens has been determined (Patel and Dinesh-Kumar, 2008; Hofius et al., 2009; Lai et al., 2011; Lenz et al., 2011). Arabidopsis (Arabidopsis thaliana) plants defective in AUTOPHAGY-RELATED (ATG) genes exhibited enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, suggesting that the massive breakdown of cytoplasmic materials provides nutrients for the growth of necrotrophic pathogens or that fungal toxin-induced necrotic cell death is enhanced in atg mutants (Lai et al., 2011; Lenz et al., 2011). However, studies on the responses to the biotrophic pathogen Pseudomonas syringae pv tomato DC3000 (Pst DC3000) have yielded contradictory results. Whereas earlier studies reported that bacterial numbers significantly increased in ATG6-antisense (AS) and atg mutant plants (Patel and Dinesh-Kumar, 2008; Hofius et al., 2009), a recent study indicated that atg mutants exhibit increased resistance to Pst DC3000 (Lenz et al., 2011). Although these discrepancies remain to be resolved, salicylic acid (SA) levels and SA-dependent gene expression were both elevated in atg mutants, suggesting that autophagy may negatively regulate SA-associated plant immunity (Yoshimoto et al., 2009; Lenz et al., 2011). These findings indicate that the role of autophagy in plant immunity depends on the lifestyle of the invading pathogens (Lenz et al., 2011).Autophagy plays an important role in the regulation of HR PCD in plant innate immunity (Hayward and Dinesh-Kumar, 2011). Tobacco (Nicotiana tabacum) plants silenced for ATG6/Beclin1 and other ATG genes such as phosphatidylinositol 3-kinase (PI3K)/vacuolar protein sorting34 (VPS34), ATG3, and ATG7 underwent unrestricted HR PCD upon pathogen infection (Liu et al., 2005). ATG6-AS and atg5 mutant Arabidopsis plants also displayed unlimited HR PCD upon infection with the avirulent bacterium Pst DC3000 (AvrRpm1; Patel and Dinesh-Kumar, 2008; Yoshimoto et al., 2009). These studies suggest that autophagy is a “prosurvival” or “antideath” mechanism that negatively regulates HR PCD (Liu and Bassham, 2012). By contrast, a “prodeath” role has been suggested for autophagy in HR PCD regulation (Hofius et al., 2009). Pst DC3000 (AvrRps4)-induced and, to a lesser extent, Pst DC3000 (AvrRpm1)-induced HR PCD was suppressed in atg mutants, suggesting that autophagy plays a positive role and that autophagic cell death is involved in RPS4- and RPM1-mediated HR cell death.We previously showed that the small GTP-binding protein RabG3b, isolated from secretome analysis in Arabidopsis (Oh et al., 2005), functions as a component of autophagy and positively regulates TE differentiation via the activation of autophagic cell death (Kwon et al., 2010a, 2010b). Overexpression of a constitutively active RabG3b (RabG3bCA) in plants significantly increased autophagy during PCD associated with TE differentiation, thereby enhancing TE formation and xylem development. Transgenic poplar (Populus alba × Populus tremula var glandulosa) overexpressing Arabidopsis RabG3bCA was further generated, and these exhibited significant stimulation of xylem development together with autophagic activation, suggesting that RabG3b is a positive regulator of autophagy and xylem development in Populus spp. as well as Arabidopsis (Kwon et al., 2011). We also reported that RabG3b is involved in cell death associated with the fungal pathogen A. brassicicola and infection with the fungal toxin fumonisin B1 (FB1) as well as leaf senescence (Kwon et al., 2009). Here, we extend our work to determine the role of RabG3b and autophagy in immunity-associated HR PCD. We found that RabG3bCA transgenic plants accumulated a large number of autophagic structures and displayed accelerated, expanded cell death against a number of PCD inducers, such as FB1 and the bacterial pathogens Pst DC3000 (AvrRpm1) and Pst DC3000 (AvrRpt2). Our results suggest that RabG3b plays a positive role in immunity-associated HR PCD via the activation of autophagic cell death.  相似文献   

6.
Photosystem II (PSII) requires constant disassembly and reassembly to accommodate replacement of the D1 protein. Here, we characterize Arabidopsis thaliana MET1, a PSII assembly factor with PDZ and TPR domains. The maize (Zea mays) MET1 homolog is enriched in mesophyll chloroplasts compared with bundle sheath chloroplasts, and MET1 mRNA and protein levels increase during leaf development concomitant with the thylakoid machinery. MET1 is conserved in C3 and C4 plants and green algae but is not found in prokaryotes. Arabidopsis MET1 is a peripheral thylakoid protein enriched in stroma lamellae and is also present in grana. Split-ubiquitin assays and coimmunoprecipitations showed interaction of MET1 with stromal loops of PSII core components CP43 and CP47. From native gels, we inferred that MET1 associates with PSII subcomplexes formed during the PSII repair cycle. When grown under fluctuating light intensities, the Arabidopsis MET1 null mutant (met1) showed conditional reduced growth, near complete blockage in PSII supercomplex formation, and concomitant increase of unassembled CP43. Growth of met1 in high light resulted in loss of PSII supercomplexes and accelerated D1 degradation. We propose that MET1 functions as a CP43/CP47 chaperone on the stromal side of the membrane during PSII assembly and repair. This function is consistent with the observed differential MET1 accumulation across dimorphic maize chloroplasts.  相似文献   

7.
Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. In plants, little is known about the underlying mechanism of autophagosome formation. In this study, we report that SH3 DOMAIN-CONTAINING PROTEIN2 (SH3P2), a Bin-Amphiphysin-Rvs domain–containing protein, translocates to the phagophore assembly site/preautophagosome structure (PAS) upon autophagy induction and actively participates in the membrane deformation process. Using the SH3P2–green fluorescent protein fusion as a reporter, we found that the PAS develops from a cup-shaped isolation membranes or endoplasmic reticulum–derived omegasome-like structures. Using an inducible RNA interference (RNAi) approach, we show that RNAi knockdown of SH3P2 is developmentally lethal and significantly suppresses autophagosome formation. An in vitro membrane/lipid binding assay demonstrates that SH3P2 is a membrane-associated protein that binds to phosphatidylinositol 3-phosphate. SH3P2 may facilitate membrane expansion or maturation in coordination with the phosphatidylinositol 3-kinase (PI3K) complex during autophagy, as SH3P2 promotes PI3K foci formation, while PI3K inhibitor treatment inhibits SH3P2 from translocating to autophagosomes. Further interaction analysis shows that SH3P2 associates with the PI3K complex and interacts with ATG8s in Arabidopsis thaliana, whereby SH3P2 may mediate autophagy. Thus, our study has identified SH3P2 as a novel regulator of autophagy and provided a conserved model for autophagosome biogenesis in Arabidopsis.  相似文献   

8.
9.
In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [−DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and −DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that −DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in −DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under −DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to −DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under −DIF conditions. Indeed, petioles of plants under −DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under −DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the −DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.In nature, during the day (light), temperatures are usually higher than during the night (dark). Correspondingly, most plants show optimal growth under such synchronous light and temperature cycles. Increasing the difference between day and night temperature (+DIF) results in increased elongation growth in various species, a phenomenon referred to as thermoperiodism (Went, 1944). The opposite regime, when the temperature of the day (DT) is lower than the temperature of the night (NT), is called −DIF (negative DT/NT difference). Under −DIF conditions, the elongation growth of stems and leaves of various plant species is reduced (Maas and van Hattum, 1998; Carvalho et al., 2002; Thingnaes et al., 2003). Arabidopsis (Arabidopsis thaliana) plants grown under −DIF (DT/NT 12°C/22°C) displayed a reduction in leaf elongation of approximately 20% compared with the control (DT/NT 22°C/12°C; Thingnaes et al., 2003). −DIF is frequently applied in horticulture to produce crops with a desirable compact architecture without the need for growth-retarding chemicals (Myster and Moe, 1995). Despite the economic importance of the application of such temperature regimes in horticulture, the mechanistic basis of the growth reduction under −DIF is still poorly understood.Previously, it was demonstrated that −DIF affects phytohormone signaling in plants. In pea (Pisum sativum), for instance, the −DIF growth reduction correlated with increased catabolism of the phytohormone GA (Stavang et al., 2005). In contrast to pea, active GA levels did not decrease in response to −DIF in Arabidopsis (Thingnaes et al., 2003). On the other hand, the −DIF growth response in Arabidopsis was associated with reduced auxin levels (Thingnaes et al., 2003). The photoreceptor PHYTOCHROME B (PHYB) has been shown to be important for the response to −DIF, as phyB mutants of Arabidopsis (Thingnaes et al., 2008) and cucumber (Cucumis sativus; Patil et al., 2003) are insensitive to −DIF.In this work, the growth-related movement of mature Arabidopsis rosette leaves was analyzed under control (+DIF) and −DIF conditions. Under −DIF, the amplitude of leaf movement was decreased and the phase of movement was later, compared with control plants. The altered leaf growth patterns observed in −DIF could be restored by the application of ethylene. −DIF reduced the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE2 (ACS2) in the petiole, which correlated with reduced 1-aminocyclopropane-1-carboxylic acid (ACC) levels and decreased amplitude and delayed phase of leaf movement. Our results indicate that local ACS activity plays an important biological role, despite the fact that ethylene is a gaseous and fast-diffusing hormone. In addition, we demonstrate that in the phyB9 mutant, the phase of leaf movement is almost fully temperature entrained. Finally, ethylene levels and sensitivity are increased in phyB9, suggesting a role for PHYB in constraining temperature-induced shifts in the phase of leaf movement and dampening of leaf movement amplitude by controlling ethylene production and sensitivity.  相似文献   

10.
11.
Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology.Plastids originated from the endosymbiosis of cyanobacteria and can differentiate into several forms depending on their intracellular functions during the plant life cycle (Sakamoto et al., 2008). The amyloplast is a terminally differentiated plastid responsible for starch synthesis and storage. Starch forms insoluble particles in amyloplasts, referred to as starch grains (SGs). SGs are easily visualized by staining with iodine solution, and they can be observed using a light microscope. SGs are observed in storage organs such as seed endosperm, potato (Solanum tuberosum) tubers, and pollen grains. Nonstorage tissues such as endodermis and root caps also contain SGs (Morita, 2010).Cereal endosperm accumulates high levels of starch in amyloplasts. The volume of SGs is approximately the same as the volume of amyloplasts that fill most of the intracellular space. SGs in rice (Oryza sativa) endosperm are normally 10 to 20 μm in diameter (Matsushima et al., 2010). One amyloplast contains a single SG that is assembled of several dozen smaller starch granules. Each starch granule is a sharp-edged polyhedron with a typical diameter of 3 to 8 μm. This type of SG is called a compound SG (Tateoka, 1962). For compound SGs, starch granules are assembled (but not fused) to form a single SG, which is easily separated by conventional purification procedures. By contrast, simple SGs contain a single starch granule. Simple SGs are produced in several important crops, such as maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), and wheat (Triticum aestivum; Tateoka, 1962; Matsushima et al., 2010, 2013).The size of SGs in cereal endosperm is diverse. Maize and sorghum SGs have a uniform size distribution of approximately 10 μm in diameter (Jane et al., 1994; Matsushima et al., 2010; Ai et al., 2011). In barley and wheat, SGs of two discrete size classes (approximately 15−25 μm and less than 10 μm) coexist in the same cells (Evers, 1973; French, 1984; Jane et al., 1994; Matsushima et al., 2010). In Bromus species, intrageneric size variations of SGs are observed in which even phylogenetic neighbors develop distinctly sized SGs (Matsushima et al., 2013). The size of SGs can be controlled by manipulating the activity of starch synthetic enzymes using transgenic plants or genetic mutants (Gutiérrez et al., 2002; Bustos et al., 2004; Ji et al., 2004; Stahl et al., 2004; Matsushima et al., 2010). However, the molecular mechanism that controls the interspecific size variations of SGs has not been resolved.The SG occupies most of the amyloplast interior, because the SG is approximately the same size as the amyloplast. The size of amyloplasts may affect the size of SGs, or vice versa. Amyloplasts and chloroplasts both develop from proplastids. The size of chloroplasts is controlled by the chloroplast binary fission division machinery, especially by the ring structures that form at the division sites (Miyagishima, 2011). Proteins involved in the ring structures have been isolated, including Filamenting temperature-sensitive mutantZ (FtsZ), Minicell locusD (MinD), MinE, and ACCUMULATION AND REPLICATIONS OF CHLOROPLAST5 (ARC5). Arabidopsis (Arabidopsis thaliana) mutants that are defective in these proteins have defects in chloroplast division and contain enlarged and dumbbell-shaped chloroplasts. In contrast to the binary fission of chloroplasts, amyloplasts divide at multiple sites and generate a beads-on-a-string structure (Yun and Kawagoe, 2009). The inhibition of the chloroplast division machinery does not result in enlarged amyloplasts (Yun and Kawagoe, 2009).We recently developed a rapid method to prepare thin sections of endosperm (Matsushima et al., 2010). Using this method, SGs in mature endosperm can be easily and clearly observed. We performed genetic screening for rice mutants defective in SG morphology and size. One of the isolated mutants, substandard starch grain4 (ssg4), develops enlarged SGs in its endosperm. In this study, we characterized ssg4 phenotypes and identified the responsible gene. SSG4 encodes a protein containing 2,135 amino acid residues and an N-terminal plastid-targeted sequence. The domain of unknown function 490 (DUF490) was found at the C terminus of SSG4, where the ssg4 mutation was located. This suggests that SSG4 is a novel factor that influences the size of SGs and has potential as a molecular tool for starch breeding and biotechnology.  相似文献   

12.
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.  相似文献   

13.
Carbohydrate metabolism in plants is tightly linked to photosynthesis and is essential for energy and carbon skeleton supply of the entire organism. Thus, the hexose phosphate pools of the cytosol and the chloroplast represent important metabolic resources that are maintained through action of phosphoglucose isomerase (PGI) and phosphoglucose mutase interconverting glucose 6-phosphate, fructose 6-phosphate, and glucose 1-phosphate. Here, we investigated the impact of disrupted cytosolic PGI (cPGI) function on plant viability and metabolism. Overexpressing an artificial microRNA targeted against cPGI (amiR-cpgi) resulted in adult plants with vegetative tissue essentially free of cPGI activity. These plants displayed diminished growth compared with the wild type and accumulated excess starch in chloroplasts but maintained low sucrose content in leaves at the end of the night. Moreover, amiR-cpgi plants exhibited increased nonphotochemical chlorophyll a quenching during photosynthesis. In contrast to amiR-cpgi plants, viable transfer DNA insertion mutants disrupted in cPGI function could only be identified as heterozygous individuals. However, homozygous transfer DNA insertion mutants could be isolated among plants ectopically expressing cPGI. Intriguingly, these plants were only fertile when expression was driven by the ubiquitin10 promoter but sterile when the seed-specific unknown seed protein promoter or the Cauliflower mosaic virus 35S promoter were employed. These data show that metabolism is apparently able to compensate for missing cPGI activity in adult amiR-cpgi plants and indicate an essential function for cPGI in plant reproduction. Moreover, our data suggest a feedback regulation in amiR-cpgi plants that fine-tunes cytosolic sucrose metabolism with plastidic starch turnover.Starch and Suc turnover are major pathways of primary metabolism in all higher plants. As such, they are essential for carbohydrate storage and the energy supply of sink tissues and as building blocks for amino acid, fatty acid, or cell wall biosynthesis (Stitt and Zeeman, 2012).A core reaction in both starch and Suc biosynthesis is the reversible interconversion of the hexose phosphate pool metabolites Fru 6-phosphate (Fru6P) and Glc 6-phosphate (Glc6P), which is mediated by phosphoglucose isomerase (PGI). Arabidopsis (Arabidopsis thaliana) contains two isoforms of PGI, one in the plastids and one in the cytosol (Caspar et al., 1985).During the light period, the plastid isoform of PGI (PGI1) is involved in starch biosynthesis by generating Glc6P from the primary photosynthetic product Fru6P. Glc6P is further converted to Glc 1-phosphate (Glc1P) and ADP-glucose via action of phosphoglucomutase (PGM) and ADP-glucose pyrophosphorylase (AGPase), respectively (Stitt and Zeeman, 2012). Finally, transfer of the glucosyl moiety of ADP-glucose to the growing carbohydrate chain of starch is mediated by starch synthases. Any of the enzymatic reactions of this linear pathway is essential for starch synthesis, as illustrated by the virtual absence of transitory starch in chloroplasts of mutant plant lines with impaired function of PGI1 (Yu et al., 2000; Kunz et al., 2010), PGM (Caspar et al., 1985; Kofler et al., 2000), or AGPase (Lin et al., 1988). Interestingly, in a few specific cell types, e.g. leaf guard cells and root columella cells, loss of PGI1 activity can be bypassed by the presence of the plastid Glc6P/phosphate translocator GPT1 (Niewiadomski et al., 2005; Kunz et al., 2010).The cytosolic isoform of PGI (cPGI) is involved in anabolism and catabolism of Suc, the major transport form of carbohydrates in plants. Glc6P and Fru6P interconversion is necessary for both Suc synthesis during the day and during the night. During the day, Suc synthesis in source leaves is fueled mainly by triose phosphates exported from chloroplasts that are eventually converted to Fru6P in the cytosol. However, Fru6P is only one substrate for the Suc-generating enzyme Suc phosphate synthase. The second substrate, UDP-glucose, is synthesized from Fru6P via Glc6P and Glc1P by the cytosolic isoenzymes of PGI1 and PGM as well as UDP-glucose pyrophosphorylase.Because Suc is the major long-distance carbon transport form, its synthesis has to continue throughout the night to supply energy and carbohydrates to all tissues. The nocturnal synthesis of Suc is dependent on breakdown and mobilization of transitory starch from chloroplasts (Zeeman et al., 2007) via export of maltose and Glc (Weber et al., 2000; Niittylä et al., 2004; Weise et al., 2004; Cho et al., 2011). Exported maltose is temporarily integrated into cytosolic heteroglycans (Fettke et al., 2005) mediated by disproportionating enzyme2 (DPE2; Chia et al., 2004; Lu and Sharkey, 2004) yielding Glc and a heteroglycan molecule elongated by an α1-4-bound glucosyl residue. Cytosolic Glc can directly be phosphorylated to Glc6P by the action of hexokinase, while temporarily stored Glc in heteroglycans is released as Glc1P mediated by cytosolic glucan phosphorylase2 (PHS2; Fettke et al., 2004; Lu et al., 2006). Both Glc6P and Glc1P can then be converted to UDP-glucose as during the day.Generation of Fru6P, the second substrate for Suc synthesis, can proceed only to a limited extent from triose phosphates during the night. This limitation is caused mainly by the nocturnal inactivation of Fru 1,6-bisphosphatase (Cséke et al., 1982; Stitt, 1990), a key enzyme in Suc biosynthesis during the day. Hence, in contrast to the situation in the light, cPGI activity is now crucial for providing Fru6P from Glc6P.On the catabolic side, degradation of Suc into its monosaccharides in sink tissues yields both Glc6P and Fru6P, of which only Fru6P can be utilized in glycolytic degradation. Therefore, cPGI is also required for Glc6P conversion to Fru6P in glycolysis, which, in combination with respiration, is the major path of energy production in heterotrophic tissues.Impairment or loss of function of enzymes contributing to the cytosolic hexose phosphate pool has recently been investigated for the Glc1P-forming enzyme PGM (Egli et al., 2010). The Arabidopsis genome encodes three PGM isoforms, with PGM1 localized to plastids and PGM2 and PGM3 localized to the cytosol (Caspar et al., 1985; Egli et al., 2010). Analyses of transfer DNA (T-DNA) mutants showed that homozygous pgm2/pgm3 double mutants were nonviable because of impaired gametophyte development. However, pgm2 and pgm3 single mutants grew like ecotype Columbia (Col-0) wild-type plants, indicating overlapping functions of PGM2 and PGM3 (Egli et al., 2010).By contrast, cPGI is encoded only by a single locus in Arabidopsis (Kawabe et al., 2000). Higher plant mutants reduced in cPGI activity have so far been characterized only in ethyl methanesulfonate-mutagenized Clarkia xantiana (Jones et al., 1986a; Kruckeberg et al., 1989; Neuhaus et al., 1989). The C. xantiana genome encodes for two isoenzymes of cPGI, and homozygous point mutations in each individual cPGI led to significant decrease in cPGI enzyme activity, which was further reduced to a residual activity of 18% in cpgi2/cpgi3 double mutants, where the cPGI3 locus was heterozygous for the mutation (Jones et al., 1986a; Kruckeberg et al., 1989). Detailed physiological analyses of these mutants indicated a negative impact on Suc biosynthesis and elevated starch levels when cPGI activity was decreased at least 3- to 5-fold (Kruckeberg et al., 1989).The physiological impact of decreased or even absent cPGI activity has not been characterized in the genetic model organism Arabidopsis. Here, we show that homozygous T-DNA insertion mutants in the cPGI locus are nonviable and present data from analyses of mature Arabidopsis plants constitutively expressing artificial microRNAs (amiRNAs) targeted against cPGI. These mutants reveal altered photosynthesis, a strong impact on nocturnal leaf starch degradation, and impaired Suc metabolism.  相似文献   

14.
The lipodystrophy protein SEIPIN is important for lipid droplet (LD) biogenesis in human and yeast cells. In contrast with the single SEIPIN genes in humans and yeast, there are three SEIPIN homologs in Arabidopsis thaliana, designated SEIPIN1, SEIPIN2, and SEIPIN3. Essentially nothing is known about the functions of SEIPIN homologs in plants. Here, a yeast (Saccharomyces cerevisiae) SEIPIN deletion mutant strain and a plant (Nicotiana benthamiana) transient expression system were used to test the ability of Arabidopsis SEIPINs to influence LD morphology. In both species, expression of SEIPIN1 promoted accumulation of large-sized lipid droplets, while expression of SEIPIN2 and especially SEIPIN3 promoted small LDs. Arabidopsis SEIPINs increased triacylglycerol levels and altered composition. In tobacco, endoplasmic reticulum (ER)-localized SEIPINs reorganized the normal, reticulated ER structure into discrete ER domains that colocalized with LDs. N-terminal deletions and swapping experiments of SEIPIN1 and 3 revealed that this region of SEIPIN determines LD size. Ectopic overexpression of SEIPIN1 in Arabidopsis resulted in increased numbers of large LDs in leaves, as well as in seeds, and increased seed oil content by up to 10% over wild-type seeds. By contrast, RNAi suppression of SEIPIN1 resulted in smaller seeds and, as a consequence, a reduction in the amount of oil per seed compared with the wild type. Overall, our results indicate that Arabidopsis SEIPINs are part of a conserved LD biogenesis machinery in eukaryotes and that in plants these proteins may have evolved specialized roles in the storage of neutral lipids by differentially modulating the number and sizes of lipid droplets.  相似文献   

15.
Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner.  相似文献   

16.
17.
Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3′-phosphoadenosine 5′-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5′-3′ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response.Programmed cell death (PCD) is a universal process in multicellular organisms, contributing to the controlled and active degradation of the cell. In plants, PCD is required for processes as diverse as development, self-incompatibility, and stress response. One well-documented example is the induction of PCD upon pathogen attack, allowing the confinement of the infection, and resistance of the plant. The signaling events leading to the onset of PCD have been extensively studied: pathogen recognition triggers activation of mitogen-activated protein kinase cascades, as well as production of reactive oxygen species (ROS) and salicylic acid (SA), which lead to a hypersensitive response (Coll et al., 2011).From a cellular point of view, several classes of plant PCD have been described and compared with the ones found in animal cells (van Doorn, 2011). PCD is thought to have evolved independently in plants and animals, and genes underlying these mechanisms are therefore poorly conserved between the two kingdoms. However, most cellular features are conserved between plant and animal PCD that are both characterized by cell shrinkage, chromatin condensation, DNA laddering, mitochondria permeabilization, and depolarization (Dickman and Fluhr, 2013). In animal cells, mitochondria play a central role in the regulation of apoptosis (Czabotar et al., 2014; Mariño et al., 2014), and this role is likely shared between the two kingdoms (Lord and Gunawardena, 2012). That said, additional mitochondria-independent PCD pathways have clearly evolved in plants.Genetic approaches have greatly contributed to our understanding of cellular pathways governing PCD in plants. For example, the isolation of lesion mimic mutants (LMMs), in which cell death occurs spontaneously, has allowed the identification of several negative regulators of cell death (for review, see Bruggeman et al., 2015b). Interestingly, lesion formation is light dependent in several of these mutants, which include one of the best characterized LMMs—lesions simulating disease1 (lsd1; Dietrich et al., 1994). The LSD1 protein is required for plant acclimation to excess excitation energy (Mateo et al., 2004): when plants are exposed to excessive amounts of light, the redox status of the plastoquinone pool in the chloroplastic electron transfer chain is thought to influence LSD1-dependent signaling to modulate cell death (Mühlenbock et al., 2008). Additionally, we have previously identified the myoinositol phosphate synthase1 (mips1) mutant as a LMM, in which lesion formation is also light dependent (Meng et al., 2009). This mutant is deficient in the myoinositol (MI) phosphate synthase that catalyzes the first committed step of MI biosynthesis and displays pleiotropic defects such as reduced root growth, abnormal vein development, and spontaneous cell death on leaves, together with severe growth reduction after lesions begin to develop (Meng et al., 2009; Donahue et al., 2010). The light-dependent PCD in the mips1 mutant, as observed for lsd1, suggests that chloroplasts may play a role in the MI-dependent cell death regulation. Accumulating evidence suggests that chloroplasts may play a central role in PCD regulation like mitochondria in animal cells (Wang and Bayles, 2013). First, as described in the case of lsd1, excess light energy received by the chloroplast can function as a trigger for PCD. Furthermore, singlet oxygen (1O2), a ROS, can activate the EXECUTER1 (EX1) and EX2 proteins in the chloroplasts to initiate PCD (Lee et al., 2007). Likewise, ROS generated by chloroplasts play a major role for PCD onset during nonhost interaction between tobacco (Nicotiana tabacum) and Xanthomonas campestris (Zurbriggen et al., 2009). Finally, functional chloroplasts have also been shown to be required for PCD in cell suspensions (Gutierrez et al., 2014) and in a number of LMMs (Mateo et al., 2004; Meng et al., 2009; Bruggeman et al., 2015b). Thus, chloroplasts are now recognized as important components of plant defense response against pathogens (Stael et al., 2015) and are proposed to function with mitochondria in the execution of PCD (Van Aken and Van Breusegem, 2015). However, the exact signaling and metabolic contribution of chloroplasts to PCD remain to be elucidated. Furthermore, cross talk between chloroplasts and mitochondria does occur, such as during photorespiration (Sunil et al., 2013), but whether such communication functions sequentially or in parallel in the control of PCD remains to be determined (Van Aken and Van Breusegem, 2015).To further investigate how chloroplasts contribute to the regulation of cell death, we performed both forward and reverse genetics on the mips1 mutant. An extragenic secondary mutation in divinyl protochlorophyllide 8-vinyl reductase involved in chlorophyll biosynthesis leads to chlorophyll deficiency that abolishes the mips1 cell death phenotype, as do changes in CO2 availability. These findings provide evidence for a link between photosynthetic activity and PCD induction in mips1. Additionally, we investigated the contribution of several retrograde signaling pathways (Chan et al., 2015) to the control of PCD in mips1. This process was independent of GENOMES UNCOUPLED (GUN) and EX signaling pathways, but we found that the SAL1-PAP_XRN retrograde signaling pathway inhibits cell death as well as basal defense reactions in Arabidopsis (Arabidopsis thaliana).  相似文献   

18.
Artificial microRNA (amiRNA) approaches offer a powerful strategy for targeted gene manipulation in any plant species. However, the current unpredictability of amiRNA efficacy has limited broad application of this promising technology. To address this, we developed epitope-tagged protein-based amiRNA (ETPamir) screens, in which target mRNAs encoding epitope-tagged proteins were constitutively or inducibly coexpressed in protoplasts with amiRNA candidates targeting single or multiple genes. This design allowed parallel quantification of target proteins and mRNAs to define amiRNA efficacy and mechanism of action, circumventing unpredictable amiRNA expression/processing and antibody unavailability. Systematic evaluation of 63 amiRNAs in 79 ETPamir screens for 16 target genes revealed a simple, effective solution for selecting optimal amiRNAs from hundreds of computational predictions, reaching ∼100% gene silencing in plant cells and null phenotypes in transgenic plants. Optimal amiRNAs predominantly mediated highly specific translational repression at 5′ coding regions with limited mRNA decay or cleavage. Our screens were easily applied to diverse plant species, including Arabidopsis thaliana, tobacco (Nicotiana benthamiana), tomato (Solanum lycopersicum), sunflower (Helianthus annuus), Catharanthus roseus, maize (Zea mays) and rice (Oryza sativa), and effectively validated predicted natural miRNA targets. These screens could improve plant research and crop engineering by making amiRNA a more predictable and manageable genetic and functional genomic technology.  相似文献   

19.
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum–associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号