首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
Fibroblast growth factor 21 (FGF21) modulates glucose and lipid metabolism during fasting. In addition, previous evidence indicates that increased expression of FGF21 during chronic food restriction is associated with reduced bone growth and growth hormone (GH) insensitivity. In light of the inhibitory effects on growth plate chondrogenesis mediated by other FGFs, we hypothesized that FGF21 causes growth inhibition by acting directly at the long bones' growth plate. We first demonstrated the expression of FGF21, FGFR1 and FGFR3 (two receptors known to be activated by FGF21) and β-klotho (a co-receptor required for the FGF21-mediated receptor binding and activation) in fetal and 3-week-old mouse growth plate chondrocytes. We then cultured mouse growth plate chondrocytes in the presence of graded concentrations of rhFGF21 (0.01-10 μg/ml). Higher concentrations of FGF21 (5 and 10 μg/ml) inhibited chondrocyte thymidine incorporation and collagen X mRNA expression. 10 ng/ml GH stimulated chondrocyte thymidine incorporation and collagen X mRNA expression, with both effects prevented by the addition in the culture medium of FGF21 in a concentration-dependent manner. In addition, FGF21 reduced GH binding in cultured chondrocytes. In cells transfected with FGFR1 siRNA or ERK 1 siRNA, the antagonistic effects of FGF21 on GH action were all prevented, supporting a specific effect of this growth factor in chondrocytes. Our findings suggest that increased expression of FGF21 during food restriction causes growth attenuation by antagonizing the GH stimulatory effects on chondrogenesis directly at the growth plate. In addition, high concentrations of FGF21 may directly suppress growth plate chondrocyte proliferation and differentiation.  相似文献   

2.
3.
4.
PPARalpha is a key regulator of hepatic FGF21   总被引:8,自引:0,他引:8  
The metabolic regulator fibroblast growth factor 21 (FGF21) has antidiabetic properties in animal models of diabetes and obesity. Using quantitative RT-PCR, we here show that the hepatic gene expression of FGF21 is regulated by the peroxisome proliferator-activated receptor alpha (PPARalpha). Fasting or treatment of mice with the PPARalpha agonist Wy-14,643 induced FGF21 mRNA by 10-fold and 8-fold, respectively. In contrast, FGF21 mRNA was low in PPARalpha deficient mice, and fasting or treatment with Wy-14,643 did not induce FGF21. Obese ob/ob mice, known to have increased PPARalpha levels, displayed 12-fold increased hepatic FGF21 mRNA levels. The potential importance of PPARalpha for FGF21 expression also in human liver was shown by Wy-14,643 induction of FGF21 mRNA in human primary hepatocytes, and PPARalpha response elements were identified in both the human and mouse FGF21 promoters. Further studies on the mechanisms of regulation of FGF21 by PPARalpha in humans will be of great interest.  相似文献   

5.
Fibroblast growth factor 21 (FGF21) has been proposed to be an antiaging hormone on the basis of experimental studies in rodent models. However, circulating FGF21 levels are increased with aging in rodents and humans. Moreover, despite the metabolic health‐promoting effects of FGF21, the levels of this hormone are increased under conditions such as obesity and diabetes, an apparent incongruity that has been attributed to altered tissue responsiveness to FGF21. Here, we investigated serum FGF21 levels and expression of genes encoding components of the FGF21‐response molecular machinery in adipose tissue from healthy elderly individuals (≥70 years old) and young controls. Serum FGF21 levels were increased in elderly individuals and were positively correlated with insulinemia and HOMA‐IR, indices of mildly deteriorated glucose homeostasis. Levels of β‐Klotho, the coreceptor required for cellular responsiveness to FGF21, were increased in subcutaneous adipose tissue from elderly individuals relative to those from young controls, whereas FGF receptor‐1 levels were unaltered. Moreover, total ERK1/2 protein levels were decreased in elderly individuals in association with an increase in the ERK1/2 phosphorylation ratio relative to young controls. Adipose explants from aged and young mice respond similarly to FGF21 “ex vivo”. Thus, in contrast to what is observed in obesity and diabetes, high levels of FGF21 in healthy aging are not associated with repressed FGF21‐responsiveness machinery in adipose tissue. The lack of evidence for impaired FGF21 responsiveness in adipose tissue establishes a distinction between alterations in the FGF21 endocrine system in aging and chronic metabolic pathologies.  相似文献   

6.
7.
Fibroblast growth factor-21 (FGF21) has therapeutic potential for metabolic syndrome due to positive effects on fatty acid metabolism in liver and white adipose tissue. FGF21 also improves pancreatic islet survival in excess palmitate; however, much less is known about FGF21-induced metabolism in this tissue. We first confirmed FGF21-dependent activity in islets by identifying expression of the cognate coreceptor Klothoβ, and by measuring a ligand-stimulated decrease in acetyl-CoA carboxylase expression. To further reveal the effect of FGF21 on metabolism, we employed a unique combination of two-photon and confocal autofluorescence imaging of the NAD(P)H and mitochondrial NADH responses while holding living islets stationary in a microfluidic device. These responses were further correlated to mitochondrial membrane potential and insulin secretion. Glucose-stimulated responses were relatively unchanged by FGF21. In contrast, responses to glucose in the presence of palmitate were significantly reduced compared to controls showing diminished NAD(P)H, mitochondrial NADH, mitochondrial membrane potential, and insulin secretion. Consistent with the glucose-stimulated responses being smaller due to continued fatty acid oxidation, mitochondrial membrane potential was increased in FGF21-treated islets by using the fatty acid transport inhibitor etomoxir. Citrate-stimulated NADPH responses were also significantly larger in FGF21-treated islets suggesting preference for citrate cycling rather than acetyl-CoA carboxylase-dependent fatty acid synthesis. Overall, these data show a reduction in palmitate-induced potentiation of glucose-stimulated metabolism and insulin secretion in FGF21-treated islets, and establish the use of autofluorescence imaging and microfluidic devices to investigate cell metabolism in a limited amount of living tissue.  相似文献   

8.
9.
成纤维细胞生长因子21(fibroblast growth factor 21,FGF21)是一种主要的脂肪代谢调节因子,主要在肝脏中表达;FGF21有助于肝脏的脂肪代谢以及生酮反应,可以促进脂肪细胞摄取葡萄糖,促进胰岛素分泌,延缓肿瘤的发展等功能。近年来研究过程中发现,FGF21可以用于糖尿病和降血脂等其他代谢疾病治疗。主要对FGF21的特点,作用机理及其分子机制进行了概括,并对FGF21在糖尿病治疗和降血脂方面的研究进行了综述。  相似文献   

10.
成纤维细胞生长因子21(fibroblast growth factor,FGF21)是FGF家族中的新成员.目前研究显示,FGF21是一个新的糖脂代谢调节因子,有望成为治疗糖尿病的新型药物.为探讨FGF21的生理功能,利用real-time PCR和Western印迹,检测FGF21在不同生理或病理状态下基因水平和蛋白水平的表达量变化规律.实验结果显示,在全天24 h中,小鼠肝脏中FGF21在晚18点至21点,表达量显著升高,这可能与啮齿类动物傍晚活动加强及进食习性有关|FGF21在饥饿后表达量显著升高,在饥饿后喂食FGF21的表达量下降,并且随着饥饿时间的延长,FGF21的表达量升高,说明FGF21与饥饿程度呈正相关|灌注葡萄糖后20 min内,FGF21的表达量下降,而灌注脂肪乳20 min内,FGF21的表达量上升,说明葡萄糖是FGF21的负调节因子,而脂肪乳是FGF21的正调节因子|利用谷氨酸钠造模的肥胖小鼠,肝脏中FGF21的表达量显著高于同龄对照组,说明肥胖可诱导FGF21高表达.综上所述,FGF21的表达量变化与小鼠夜间活动取食、饥饿程度、饮食中不同的成分以及肥胖有关.  相似文献   

11.
动脉粥样硬化是冠心病、脑梗死、外周血管病的主要诱因,近年来发病率越来越高,严重威胁着人类生命健康。脂质代谢障碍是动脉粥样硬化的病理基础。成纤维细胞生长因子21(FGF21)是FGF家族的一种内分泌因子,它能够增加葡萄糖的摄取,调节脂质代谢,并使代谢活跃的器官(如肝脏和脂肪组织)中胰岛素反应敏感。FGF21水平与动脉粥样硬化的发生率和严重程度密切相关。然而,FGF21原型在血浆的半衰期短、体外易聚集,严重限制了其临床应用。近年来,对FGF21类似物的研究取得了突破性进展。综述了FGF21的生理作用,并讨论了基于FGF21类似物治疗动脉粥样硬化的主要突破和局限性,为FGF21蛋白类新药的开发提供了理论依据。  相似文献   

12.
Background/Aims: Fibroblast growth factor 21 (FGF21) plays a protective role in ischemia/reperfusion induced cardiac injury. However, the exact molecular mechanism of FGF21 action remains unclear. This study was designed the protective effect of FGF21 on the heart and its mechanism. Method: Adenovirus vector expressing FGF21 or control β-galactosidase was injected into the myocardium of mice. Myocardial injury was observed by tissue staining and immunohistochemical staining. The expression level of caspases-3 and galectin-3 in myocardial cells were observed by immunoblotting. Then, hypoxia-induced cell model was established. Small interfering RNA (SiRNA) and plasmid were transfected into H9c2 using Lipofectamine 2000 reagent (Invitrogen). The expression levels of galectin-3, ECM and cystatin-3 in cells were observed by immunoblotting, and the relationship between fibroblast growth factor 21 and galectin-3 was analyzed. Result: Cell test in vitro showed that FGF21 could inhibit apoptosis and decrease the expression of ECM (ColIaI, fibronectin, and alpha-SMA) under hypoxia. Western blot data showed that hypoxia-induced cell damage increased galectin-3 levels, while FGF21 decreased galactose lectin-3 levels. In addition, inhibition of galactose agglutinin-3 expression by siRNA enhanced the cardioprotective effect of FGF21, while overexpression of galectin-3 reduced the cardioprotective effect of fibroblast growth factor 21. Conclusion: FGF21 may be a novel therapy for hypoxia-induced cardiac injury by regulating the expression of galectin-3.  相似文献   

13.
Katsumi Iizuka  Jun Takeda 《FEBS letters》2009,583(17):2882-1112
Fibroblast growth factor 21 (FGF21) has beneficial effects of improving the plasma glucose and lipid profiles in diabetic rodents. Here, we investigated carbohydrate response element binding protein (ChREBP) involvement in the regulation of FGF21 mRNA expression in liver. Glucose stimulation and adenoviral overexpression of dominant active ChREBP increased FGF21 mRNA. Consistently, adenoviral expression of dominant negative Mlx inhibited glucose induction of FGF21 mRNA. Furthermore, deletion studies of mouse FGF21 gene promoter (−2000 to +65 bp) revealed a glucose responsive region between −74 and −52 bp. These findings suggest that FGF21 expression is regulated by ChREBP.  相似文献   

14.
成纤维细胞生长因子21(fibroblast growth factor 21,FGF21)作为一种不依赖胰岛素的血糖调节因子,目前已被看做是治疗2型糖尿病的一个潜在的新型治疗因素.大量鼠类及灵长类动物模型的实验结果显示:FGF21可通过作用于脂肪组织及胰腺来降低血糖和甘油三酯含量,从而预防饮食诱导的肥胖及胰岛素抵抗.此外,FGF21也被证明可作为一种主要的内源性调控子,在禁食和酮症时起着关键的调控作用.然而,一些临床观察实验的结果表明,临床观察实验与动物模型实验之间虽然具有一定的相似性,但也存在很多不同,因而目前FGF21在人体中的生理学作用仍不明确.  相似文献   

15.
Diabetic nephropathy (DN), an important cause of end-stage renal diseases, brings about great social and economic burden. Due to the variable pathological changes and clinical course, the prognosis of DN is very difficult to predict. DN is also usually associated with enhanced genomic damage and cellular injury. Fibroblast growth factor 21 (FGF21), a nutritionally regulated hormone secreted mainly by the liver, plays a critical role in metabolism. Administration of FGF21 decreases blood glucose, triglyceride, and cholesterol levels, and improves insulin sensitivity, which is closely associated with the development and progression of glomerular diseases. In addition, FGF21 level was associated with renal function. However, the precise role of FGF21 in DN remains unclear. This review will give a comprehensive understanding of the underlying role of FGF21 and its possible interaction with other molecules in DN.  相似文献   

16.
Fibroblast growth factor 21 (FGF21) is active in murine adipocytes and has beneficial metabolic effects in animal models of type 2 diabetes mellitus. We assessed whether FGF21 influences lipolysis in human adipocytes and 3T3-L1 cells. FGF21 had no short-time effect (h) while a 3-day incubation with FGF21 attenuated hormone-stimulated lipolysis. FGF21 did not influence the mRNA expression of genes involved in regulating lipolysis, but significantly reduced the expression of the lipid droplet-associated phosphoprotein perilipin without affecting differentiation. Via reduced release of fatty acids into the circulation, the anti-lipolytic effect could be a mechanism through which FGF21 promotes insulin sensitivity in man.  相似文献   

17.
18.
19.
20.
Fibroblast growth factor 21 (FGF21) is a regulator of glucose and lipid metabolism. It has been widely considered as a promising candidate for the treatment of type 2 diabetes mellitus (T2DM) and other related metabolic disorders. However, lack of structural and dynamic information has limited FGF21‐based drug development. Here, using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of FGF21 and find that its non‐canonical flexible β‐trefoil conformation affects the folding of β2‐β3 hairpin and further overall protein stability. To modulate folding dynamics, we designed an FGF21‐FGF19 chimera, FGF21SS. As expected, FGF21SS shows better thermostability without inducing hepatocyte proliferation. Functional characterization of FGF21SS shows its better insulin sensitivity, reduced inflammation in 3T3‐L1 adipocytes, and lower blood glucose and insulin levels in ob/ob mice compared with wild type. Our dynamics‐based rational design provides a promising approach for FGF21‐based therapeutic development against T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号