首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Objectives

Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants.

Design

CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA.

Results

Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05).

Conclusions

The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points.  相似文献   

3.
成纤维细胞生长因子8 (fibroblast growth factor 8,FGF8)是成纤维细胞生长因子家族的成员之一,是一种组织发育过程中的重要分泌性调控信号分子,参与脊椎动物的多种组织器官的发生与发育.早期胚胎细胞通过表达FGF8在组织和器官发育、血管发生、血细胞生成、附肢发生和伤口愈合等方面发挥着重要作用.FGF8不但可以在细胞外通过胞内信号通路,而且也可以进入细胞内部发挥生物学功能.本文就FGF8在脊椎动物神经系统、内脏器官、肢体发育及不对称发育等组织、器官发育中的调控作用予以阐述.  相似文献   

4.
Fibroblast growth factor 21 (FGF21) is an important endocrine metabolic regulator expressed in multiple tissues including liver and adipose tissue. Although highest levels of expression are in pancreas, little is known about the function of FGF21 in this tissue. In order to understand the physiology of FGF21 in the pancreas, we analyzed its expression and regulation in both acinar and islet tissues. We found that acinar tissue express 20-fold higher levels than that observed in islets. We also observed that pancreatic FGF21 is nutritionally regulated; a marked reduction in FGF21 expression was noted with fasting while obesity is associated with 3–4 fold higher expression. Acinar and islet cells are targets of FGF21, which when systemically administered, leads to phosphorylation of the downstream target ERK 1/2 in about half of acinar cells and a small subset of islet cells. Chronic, systemic FGF21 infusion down-regulates its own expression in the pancreas. Mice lacking FGF21 develop significant islet hyperplasia and periductal lymphocytic inflammation when fed with a high fat obesogenic diet. Inflammatory infiltrates consist of TCRb+ Thy1+ T lymphocytes with increased levels of Foxp3+ regulatory T cells. Increased levels of inflammatory cells were coupled with elevated expression of cytokines such as TNFα, IFNγ and IL1β. We conclude that FGF21 acts to limit islet hyperplasia and may also prevent pancreatic inflammation.  相似文献   

5.
成纤维细胞生长因子(FGF)有许多重要的生理功能,并与肿瘤的形成有关.为了弄清FGF与成纤维细胞生长因子受体(FGFR)相互作用的机制,人们对FGF和FGFR的各个结合结构域进行了深入、细致的研究,定位了aFGF、bFGF的肝素结合区、bFGF的受体结合区、FGF受体的肝素结合区、配体结合区和FGF受体相互结合区,提出了两个FGF与FGFR相互作用的模型,在此基础上设计了FGF的核酸类、糖类和多肽类抑制剂,为寻找新一代抗癌药物打下了理论基础.  相似文献   

6.
Fibroblast growth factor-21 (FGF21) has therapeutic potential for metabolic syndrome due to positive effects on fatty acid metabolism in liver and white adipose tissue. FGF21 also improves pancreatic islet survival in excess palmitate; however, much less is known about FGF21-induced metabolism in this tissue. We first confirmed FGF21-dependent activity in islets by identifying expression of the cognate coreceptor Klothoβ, and by measuring a ligand-stimulated decrease in acetyl-CoA carboxylase expression. To further reveal the effect of FGF21 on metabolism, we employed a unique combination of two-photon and confocal autofluorescence imaging of the NAD(P)H and mitochondrial NADH responses while holding living islets stationary in a microfluidic device. These responses were further correlated to mitochondrial membrane potential and insulin secretion. Glucose-stimulated responses were relatively unchanged by FGF21. In contrast, responses to glucose in the presence of palmitate were significantly reduced compared to controls showing diminished NAD(P)H, mitochondrial NADH, mitochondrial membrane potential, and insulin secretion. Consistent with the glucose-stimulated responses being smaller due to continued fatty acid oxidation, mitochondrial membrane potential was increased in FGF21-treated islets by using the fatty acid transport inhibitor etomoxir. Citrate-stimulated NADPH responses were also significantly larger in FGF21-treated islets suggesting preference for citrate cycling rather than acetyl-CoA carboxylase-dependent fatty acid synthesis. Overall, these data show a reduction in palmitate-induced potentiation of glucose-stimulated metabolism and insulin secretion in FGF21-treated islets, and establish the use of autofluorescence imaging and microfluidic devices to investigate cell metabolism in a limited amount of living tissue.  相似文献   

7.
骨相关疾病是目前临床常见慢性疾病之一,特别对中老年人的健康带来严重损害。研究发现,成纤维细胞生长因子(FGFs)家族成员对骨相关疾病有治疗作用,主要为骨质疏松和骨关节炎及这两种疾病引起的其他综合症,但其作用机制尚不清楚。针对不同FGFs对不同骨相关疾病的相关作用进行总结,并对其潜在治疗作用进行了综述。  相似文献   

8.
Accumulating evidence suggests that HtrA1 (high-temperature requirement A1) is involved in modulating crucial cellular processes and implicated in life-threatening diseases, such as cancer and neuropathological disorders; however, the exact functions of this protease in vivo remain unknown. Here, we show that loss of HtrA1 function increases fibroblast growth factor 8 (FGF8) mRNA levels and triggers activation of FGF signaling, resulting in dorsalization in zebrafish embryos. Notably, HtrA1 directly cleaves FGF8 in the extracellular region, and this cleavage results in decreased activation of FGF signaling, which is essential for many physiological processes. Therefore, HtrA1 is indispensable for dorsoventral patterning in early zebrafish embryogenesis and serves as a key upstream regulator of FGF signaling through the control of FGF levels. Furthermore, this study offers insight into new strategies to control human diseases associated with HtrA1 and FGF signaling.  相似文献   

9.
FGFs (fibroblast growth factors) play major roles in a number of developmental processes. Recent studies of several human disorders, and concurrent analysis of gene knock-out and properties of the corresponding recombinant proteins have shown that FGFs and their receptors are prominently involved in the development of the skeletal system in mammals. We have compared the sequences of the nine known mammalian FGFs, FGFs from other vertebrates, and three additional sequences that we extracted from existing databases: two human FGF sequences that we tentatively designated FGF10 and FGF11, and an FGF sequence from C?norhabditis elegans. Similarly, we have compared the sequences of the four FGF receptor paralogs found in chordates with four non-chordate FGF receptors, including one recently identified in C. elegans. The comparison of FGF and FGF receptor sequences in vertebrates and nonvertebrates shows that the FGF and FGF receptor families have evolved through phases of gene duplications, one of which may have coincided with the emergence of vertebrates, in relation with their new system of body scaffold. Received: 6 April 1996 / Accepted: 5 July 1996  相似文献   

10.
11.
Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however, because of the instability of bFGF, repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study, we demonstrate that a heat-stable chimeric variant of FGF, termed FGFC, can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers, global gene expression, karyotype, or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2, for maintenance of human pluripotent stem cells.  相似文献   

12.
13.
14.
成纤维细胞生长因子21(fibroblast growth factor 21,FGF21)是一种主要的脂肪代谢调节因子,主要在肝脏中表达;FGF21有助于肝脏的脂肪代谢以及生酮反应,可以促进脂肪细胞摄取葡萄糖,促进胰岛素分泌,延缓肿瘤的发展等功能。近年来研究过程中发现,FGF21可以用于糖尿病和降血脂等其他代谢疾病治疗。主要对FGF21的特点,作用机理及其分子机制进行了概括,并对FGF21在糖尿病治疗和降血脂方面的研究进行了综述。  相似文献   

15.
Fibroblast growth factors (FGF) 1 and 2 and their tyrosine kinase receptor (FGFR) are present throughout the adult retina. FGFs are potential mitogens, but adult retinal cells are maintained in a nonproliferative state unless the retina is damaged. Our work aims to find a modulator of FGF signaling in normal and pathological retina. We identified and sequenced a truncated FGFR1 form from rat retina generated by the use of selective polyadenylation sites. This 70-kDa form of soluble extracellular FGFR1 (SR1) was distributed mainly localized in the inner nuclear layer of the retina, whereas the full-length FGFR1 form was detected in the retinal Muller glial cells. FGF2 and FGFR1 mRNA levels greatly increased in light-induced retinal degeneration. FGFR1 was detected in the radial fibers of activated retinal Muller glial cells. In contrast, SR1 mRNA synthesis followed a biphasic pattern of down- and up-regulation, and anti-SR1 staining was intense in retinal pigmented epithelial cells. The synthesis of SR1 and FGFR1 specifically and independently regulated in normal and degenerating retina suggests that changes in the proportion of various FGFR forms may control the bioavailability of FGFs and thus their potential as neurotrophic factors. This was demonstrated in vivo during retinal degeneration when recombinant SR1 inhibited the neurotrophic activity of exogenous FGF2 and increased damaging effects of light by inhibiting endogenous FGF. This study highlights the significance of the generation of SR1 in normal and pathological conditions.  相似文献   

16.

Background

Human fibroblast growth factor 21 (FGF-21) is an endocrine liver hormone that stimulates adipocyte glucose uptake independently of insulin, suppresses hepatic glucose production and is involved in the regulation of body fat. Peritoneal dialysis (PD) patients suffer potential interference with FGF-21 status with as yet unknown repercussions.

Objectives

The aim of this study was to define the natural history of FGF-21 in PD patients, to analyze its relationship with glucose homeostasis parameters and to study the influence of residual renal function and peritoneal functional parameters on FGF-21 levels and their variation over time.

Methods

We studied 48 patients with uremia undergoing PD. Plasma samples were routinely obtained from each patient at baseline and at 1, 2 and 3 years after starting PD therapy.

Results

Plasma FGF-21 levels substantially increased over the first year and were maintained at high levels during the remainder of the study period (253 pg/ml (59; 685) at baseline; 582 pg/ml (60.5–949) at first year and 647 pg/ml (120.5–1116.6) at third year) (p<0.01). We found a positive correlation between time on dialysis and FGF-21 levels (p<0.001), and also, those patients with residual renal function (RRF) had significantly lower levels of FGF-21 than those without RRF (ρ -0.484, p<0.05). Lastly, there was also a significant association between FGF-21 levels and peritoneal protein losses (PPL), independent of the time on dialysis (ρ 0.410, p<0.05).

Conclusion

Our study shows that FGF-21 plasma levels in incident PD patients significantly increase during the first 3 years. This increment is dependent on or is associated with RRF and PPL (higher levels in patients with lower RRF and higher PPL). FGF-21 might be an important endocrine agent in PD patients and could act as hormonal signaling to maintain glucose homeostasis and prevent potential insulin resistance. These preliminary results suggest that FGF-21 might play a protective role as against the development of insulin resistance over time in patients undergoing a continuous glucose load.  相似文献   

17.
18.
Fibroblast growth factor (FGF)-21 is a member of the FGF superfamily based on sequence homology. However, unlike most members of this family it does not show any mitogenic activity in all cell types tested. The objective of this study is to identify and characterize receptors for this molecule. Sequencing of the cDNA clones from 3T3-L1 adipocytes indicates that the only isoforms for FGFR-1 and 2 expressed in 3T3-L1 cells are 1IIIc and 2IIIc, respectively, suggesting that FGF-21 regulates glucose metabolism in 3T3-L1 adipocytes through FGFR-1IIIc and FGFR-2IIIc.  相似文献   

19.
肥胖是糖尿病、脂肪肝、心血管疾病等慢性代谢性疾病发生发展的重要风险因素。运动可以改善肥胖,对相关代谢性疾病的预防与康复具有积极作用。成纤维细胞生长因子21 (fibroblast growth factor 21,FGF21)是一种对机体能量稳态、糖脂代谢有积极调控作用的内分泌因子,是代谢性疾病预防和治疗的有效靶点之一。FGF21抵抗是机体对FGF21反应性减弱的现象,表现为靶组织生物学效应降低,机体FGF21代偿性合成增加。这可能是由FGF21受体(fibroblast growth factor receptors,FGFRs)和β-klotho蛋白(β-klotho,KLB)表达减少或敏感性降低所致。肥胖患者常出现FGF21抵抗,改善FGF21抵抗是治疗肥胖及相关代谢性疾病的新思路。运动不仅可以增加部分组织FGF21表达量,还可以刺激FGFRs与KLB的表达来敏化FGF21的作用,改善FGF21抵抗。  相似文献   

20.
FGF21 is a stress-induced hormone with potent anti-obesity, insulin-sensitizing, and hepatoprotective properties. Although proteolytic cleavage of recombinant human FGF21 in preclinical species has been observed previously, the regulation of endogenously produced FGF21 is not well understood. Here we identify fibroblast activation protein (FAP) as the enzyme that cleaves and inactivates human FGF21. A selective chemical inhibitor, immunodepletion, or genetic deletion of Fap stabilized recombinant human FGF21 in serum. In addition, administration of a selective FAP inhibitor acutely increased circulating intact FGF21 levels in cynomolgus monkeys. On the basis of our findings, we propose selective FAP inhibition as a potential therapeutic approach to increase endogenous FGF21 activity for the treatment of obesity, type 2 diabetes, non-alcoholic steatohepatitis, and related metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号