首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21Cip1/p27Kip1/p57Kip2-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap−/− females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap−/− ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap−/− DNA damage phenotype. Importantly, the DNA damage observed in dap−/− ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap−/− ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition.  相似文献   

2.

Background

Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo.

Methods and Results

siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization.

Conclusions

MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular injury, but accelerated reestablishment of an intact endothelium. MARCKS is a novel translational target with beneficial cell type-specific effects on both ECs and VSMCs.  相似文献   

3.
Skp2 regulates G2/M progression in a p53-dependent manner   总被引:1,自引:0,他引:1  
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation.  相似文献   

4.
The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21cip1 and p27kip1 thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.  相似文献   

5.
S phase kinase-associated protein 2 (Skp2), an F-box protein, is required for the ubiquitination and consequent degradation of p27kip1. Previous reports have showed that p27kip1 played important roles in cell cycle regulation and neurogenesis in the developing central nervous system. But the distribution and function of p27kip1 and Skp2 in nervous system lesion and regeneration remains unclear. In this study, we observed that they were expressed mainly in both Schwann cells and axons in adult rat sciatic nerve. Sciatic nerve crush and transection resulted in a significant up-regulation of Skp2 and a down-regulation of p27kip1. By immunochemistry, we found that in the distal stumps of transected nerve from the end to the edge, the appearance of Skp2 in the edge is coincided with the decrease in p27kip1 levels. Changes of them were inversely correlated. Results obtained by coimmunoprecipitation and double labeling further showed their interaction in the regenerating process. Thus, these results indicate that p27kip1 and Skp2 likely play an important role in peripheral nerve injury and regeneration. Ai-Guo Shen and Shu-Xian Shi contributed equally to this work.  相似文献   

6.
7.
The members of Rho family are well known for their regulation of actin cytoskeleton to control cell migration. The Cip/kip members of cyclin‐dependent (CDK) inhibitors have shown to implicate in cell migration and cytoskeletal dynamics. p57kip2, a CDK inhibitor, is frequently down‐regulated in several malignancy tumors. However, its biological roles in human nasopharyngeal carcinoma (NPC) cells remained to be investigated. Here, we found p57kip2 has nuclear and cytoplasm distributions and depletion of endogenous p57kip2 did not change the cell‐cycle progression. Inhibition of cell proliferation by mitomycin C promoted FBS‐mediated cell migration and accompanied with the downregulation of ΔNp63α and p57kip2, but did not change the level of p27kip1, another CDK inhibitor. By using siRNA transfection and cell migration/invasion assays, we found that knockdown of p57kip2, but not ΔNp63α, involved in promotion of NPC cell migration and invasion via decrease of phospho‐cofilin (p‐cofilin). Treatment with Y‐27632, a specific ROCK inhibitor, we found that dysregulation of ROCK/cofilin pathway decreased p‐cofilin expression and induced cell migration. This change of p‐cofilin induced actin remodeling and pronounced increase of membrane protrusions. Further, silence of p57kip2 not only decreased the interaction between p57kip2 and LIMK‐1 assayed by immunoprecipitation but also reduced the level of phospho‐LIMK1/2. Therefore, this study indicated that dysregulation of p57kip2 promoted cell migration and invasion through modulation of LIMK/cofilin signaling and suggested this induction of inappropriate cell motility might contribute to promoting tumor cell for metastasis. J. Cell. Biochem. 112: 3459–3468, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
9.
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G0/G1 cell cycle arrest and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G0/G1 cell cycle phase arrest and increased levels of p27kip1 in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G0 state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.  相似文献   

10.
Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27Kip1, a principal target of the SCFSkp2 complex. Genetic ablation of p27Kip1 in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27Kip1 by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2-/- MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ), largely restored lipid accumulation and PPARγ gene expression in Skp2−/− MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27Kip1 expression.  相似文献   

11.
p27kip1 (p27) is a cdk-inhibitory protein with an important role in the proliferation of many cell types. SCFSkp2 is the best studied regulator of p27 levels, but Skp2-mediated p27 degradation is not essential in vivo or in vitro. The molecular pathway that compensates for loss of Skp2-mediated p27 degradation has remained elusive. Here, we combine vascular injury in the mouse with genome-wide profiling to search for regulators of p27 during cell cycling in vivo. This approach, confirmed by RT-qPCR and mechanistic analysis in primary cells, identified miR-221/222 as a compensatory regulator of p27. The expression of miR221/222 is sensitive to proteasome inhibition with MG132 suggesting a link between p27 regulation by miRs and the proteasome. We then examined the roles of miR-221/222 and Skp2 in cell cycle inhibition by prostacyclin (PGI2), a potent cell cycle inhibitor acting through p27. PGI2 inhibited both Skp2 and miR221/222 expression, but epistasis, ectopic expression, and time course experiments showed that miR-221/222, rather than Skp2, was the primary target of PGI2. PGI2 activates Gs to increase cAMP, and increasing intracellular cAMP phenocopies the effect of PGI2 on p27, miR-221/222, and mitogenesis. We conclude that miR-221/222 compensates for loss of Skp2-mediated p27 degradation during cell cycling, contributes to proteasome-dependent G1 phase regulation of p27, and accounts for the anti-mitogenic effect of cAMP during growth inhibition.  相似文献   

12.
13.
In Drosophila, circulating hemocytes are derived from the cephalic mesoderm during the embryonic wave of hematopoiesis. These cells are contributed to the larva and persist through metamorphosis into the adult. To analyze this population of hemocytes, we considered data from a previously published RNAi screen in the hematopoietic niche, which suggested several members of the SCF complex play a role in lymph gland development. eater-Gal4;UAS-GFP flies were crossed to UAS-RNAi lines to knockdown the function of all known SCF complex members in a plasmatocyte-specific fashion, in order to identify which members are novel regulators of plasmatocytes. This specific SCF complex contains five core members: Lin-19-like, SkpA, Skp2, Roc1a and complex activator Nedd8. The complex was identified by its very distinctive large cell phenotype. Furthermore, these large cells stained for anti-P1, a plasmatocyte-specific antibody. It was also noted that the DNA in these cells appeared to be over-replicated. Gamma-tubulin and DAPI staining suggest the cells are undergoing re-replication as they had multiple centrioles and excessive DNA content. Further experimentation determined enlarged cells were BrdU-positive indicating they have progressed through S-phase. To determine how these cells become enlarged and undergo re-replication, cell cycle proteins were analyzed by immunofluorescence. This analysis identified three proteins that had altered subcellular localization in these enlarged cells: Cyclin E, Geminin and Double-parked. Previous research has shown that Double-parked must be degraded to exit S-phase, otherwise the DNA will undergo re-replication. When Double-parked was titrated from the nucleus by an excess of its inhibitor, geminin, the enlarged cells and aberrant protein localization phenotypes were partially rescued. The data in this report suggests that the SCFSkp2 complex is necessary to ubiquitinate Double-parked during plasmatocyte cell division, ensuring proper cell cycle progression and the generation of a normal population of this essential blood cell type.  相似文献   

14.
Previously, we have shown that downregulation of POLD4 in lung cancer cells delays progression through the G1-S cell cycle transition and leads to increased genomic instability. To date however, detailed molecular mechanisms have not been elucidated to explain how this occurs. In the present study, we found that reduction in POLD4 by siRNA knockdown promoted downregulation of both p-Akt Ser473 and Skp2 as well as upregulation of p27. Furthermore, these protein expression levels were rescued when siRNA-resistant POLD4 was ectopically expressed in the knockdown cells. These data suggest that the POLD4 downregulation is associated with impaired Akt-Skp2-p27 pathway in lung cancer.  相似文献   

15.
Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, a tumor suppressor) is down-regulated by the oncogenic signals and hypoxia, but the biological function of RECK in early tumorigenic hyperplastic phenotypes is largely unknown. Knockdown of RECK by small interfering RNA (siRECK) or hypoxia significantly promoted cell proliferation in various normal epithelial cells. Hypoxia as well as knockdown of RECK by siRNA increased the cell cycle progression, the levels of cyclin D1 and c-Myc, and the phosphorylation of Rb protein (p-pRb), but decreased the expression of p21cip1, p27kip1, and p16ink4A. HIF-2α was upregulated by knockdown of RECK, indicating HIF-2α is a downstream target of RECK. As knockdown of RECK induced the activation of epidermal growth factor receptor (EGFR) and treatment of an EGFR kinase inhibitor, gefitinib, suppressed HIF-2α expression induced by the silencing of RECK, we can suggest that the RECK silenicng-EGFR-HIF-2α axis might be a key molecular mechanism to induce hyperplastic phenotype of epithelial cells. It was also found that shRNA of RECK induced larger and more numerous colonies than control cells in an anchorage-independent colony formation assay. Using a xenograft assay, epithelial cells with stably transfected with shRNA of RECK formed a solid mass earlier and larger than those with control cells in nude mice. In conclusion, the suppression of RECK may promote the development of early tumorigenic hyperplastic characteristics in hypoxic stress.  相似文献   

16.
The Pim-1 protein kinase plays an important role in regulating both cell growth and survival and enhancing transformation by multiple oncogenes. The ability of Pim-1 to regulate cell growth is mediated, in part, by the capacity of this protein kinase to control the levels of the p27, a protein that is a critical regulator of cyclin-dependent kinases that mediate cell cycle progression. To understand how Pim-1 is capable of regulating p27 protein levels, we focused our attention on the SCFSkp2 ubiquitin ligase complex that controls the rate of degradation of this protein. We found that expression of Pim-1 increases the level of Skp2 through direct binding and phosphorylation of multiple sites on this protein. Along with known Skp2 phosphorylation sites including Ser64 and Ser72, we have identified Thr417 as a unique Pim-1 phosphorylation target. Phosphorylation of Thr417 controls the stability of Skp2 and its ability to degrade p27. Additionally, we found that Pim-1 regulates the anaphase-promoting complex or cyclosome (APC/C complex) that mediates the ubiquitination of Skp2. Pim-1 phosphorylates Cdh1 and impairs binding of this protein to another APC/C complex member, CDC27. These modifications inhibit Skp2 from degradation. Marked increases in Skp2 caused by these mechanisms lower cellular p27 levels. Consistent with these observations, we show that Pim-1 is able to cooperate with Skp2 to signal S phase entry. Our data reveal a novel Pim-1 kinase-dependent signaling pathway that plays a crucial role in cell cycle regulation.  相似文献   

17.
18.
The CDK inhibitor p27kip1 is a critical regulator of cell cycle progression, but the mechanisms by which p27kip1 controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27kip1 binding partner. To get more insights into the in vivo significance of this interaction, we generated p27kip1 and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27kip1 null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27kip1 null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27kip1 to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.  相似文献   

19.
20.
During the cell cycle, mitochondria undergo regulated changes in morphology. Two particularly interesting events are first, mitochondrial hyperfusion during the G1-S transition and second, fragmentation during entry into mitosis. The mitochondria remain fragmented between late G2- and mitotic exit. This mitotic mitochondrial fragmentation constitutes a checkpoint in some cell types, of which little is known. We bypass the ‘mitotic mitochondrial fragmentation’ checkpoint by inducing fragmented mitochondrial morphology and then measure the effect on cell cycle progression. Using Drosophila larval hemocytes, Drosophila S2R+ cell and cells in the pouch region of wing imaginal disc of Drosophila larvae we show that inhibiting mitochondrial fusion, thereby increasing fragmentation, causes cellular hyperproliferation and an increase in mitotic index. However, mitochondrial fragmentation due to over-expression of the mitochondrial fission machinery does not cause these changes. Our experiments suggest that the inhibition of mitochondrial fusion increases superoxide radical content and leads to the upregulation of cyclin B that culminates in the observed changes in the cell cycle. We provide evidence for the importance of mitochondrial superoxide in this process. Our results provide an insight into the need for mitofusin-degradation during mitosis and also help in understanding the mechanism by which mitofusins may function as tumor suppressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号