首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg) activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-κB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-κB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-κB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis–fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-κB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-κB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS.  相似文献   

3.
4.
Alloferon is a 13-amino acid peptide isolated from the bacteria-challenged larvae of the blow fly Calliphora vicina. The pharmaceutical value of the peptide has been well demonstrated by its capacity to stimulate NK cytotoxic activity and interferon (IFN) synthesis in animal and human models, as well as to enhance antiviral and antitumor activities in mice. Antiviral and the immunomodulatory effectiveness of alloferon have also been supported clinically proved in patients suffering with herpes simplex virus (HSV) and human papilloma virus (HPV) infections. To elucidate molecular response to alloferon treatment, we initially screened a model cell line in which alloferon enhanced IFN synthesis upon viral infection. Among the cell lines tested, Namalva was chosen for further proteomic analysis. Fluorescence difference gel electrophoresis (DIGE) revealed that the levels of a series of antioxidant proteins decreased after alloferon treatment, while at least three glycolytic enzymes and four heat-shock proteins were increased in their expression levels. Based on the result of our proteomic analysis, we speculated that alloferon may activate the NF-kappaB signaling pathway. IkappaB kinase (IKK) assay, Western blot analysis on IkappaBalpha and its phosphorylated form at Ser 32, and an NF-kappaB reporter assay verified our proteomics-driven hypothesis. Thus, our results suggest that alloferon potentiates immune cells by activating the NF-kappaB signaling pathway through regulation of redox potential. Since NF-kappaB activation is involved in IFN synthesis, our results provide further clues as to how the alloferon peptide may stimulate IFN synthesis.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Focal adhesion kinase (FAK) is a major signaling molecule which functions downstream of integrins or in conjunction with mitogenic signaling pathways. FAK is overexpressed and/or activated in many types of human tumors, in which it promotes cell adhesion, survival, migration and invasion. In addition to FAK''s ability to regulate signaling through its scaffolding activities, FAK encodes an intrinsic kinase activity. Although some FAK substrates have been identified, a more comprehensive analysis of substrates is lacking. In this study, we use a protein microarray to screen the human proteome for FAK substrates. We confirm that several of the proteins identified are bona fide in vitro FAK substrates, including several factors which are known to regulate the NFκB pathway. Finally, we identify a role for FAK''s kinase activity in both canonical and non-canonical NFκB signaling. Our screen therefore represents the first high throughput screen for FAK substrates and provides the basis for future in-depth analysis of the role of FAK''s kinase activity in the processes of tumorigenesis.  相似文献   

12.
13.
14.
15.
Imiquimod is known to exert its effects through Toll-like receptor 7 (TLR7) and/or TLR8, resulting in expression of proinflammatory cytokines and chemokines. Keratinocytes have not been reported to constitutively express TLR7 and TLR8, and the action of imiquimod is thought to be mediated by the adenine receptor, not TLR7 or TLR8. In this study, we revealed the expression of TLR7 in keratinocytes after calcium-induced differentiation. After addition of calcium to cultured keratinocytes, the immunological responses induced by imiquimod, such as activation of NF-κB and induction of TNF-α and IL-8, were more rapid and stronger. In addition, imiquimod induced the expression TLR7, and acted synergistically with calcium to induce proinflammatory cytokines. We confirmed that the responses induced by imiquimod were significantly inhibited by microRNAs suppressing TLR7 expression. These results suggest that TLR7 expressed in keratinocytes play key roles in the activation of NF-κB signaling by imiquimod, and that their modulation in keratinocytes could provide therapeutic potential for many inflammatory skin diseases.  相似文献   

16.
17.
We studied the signal transduction pathways involved in NF-κB activation and the induction of the cytoprotective A20 gene by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVEC). LPS induced human A20 mRNA expression with a maximum level 2 h after stimulation. The proteasome inhibitorN-acetyl-leucinyl-leucinyl-norleucinal-H (ALLN) and the tyrosine kinase inhibitor herbimycin A (HMA) blocked A20 mRNA expression and partially inhibited NF-κB DNA-binding activity induced by LPS treatment. LPS induced IκBα degradation at 30–60 min after treatment, but did not induce IκBβ degradation up to 120 min. In contrast, TNF-α rapidly induced IκBα degradation within 5 min and IκBβ degradation within 15 min. Cycloheximide did not prevent LPS-induced IκBα degradation, indicating that newly synthesized proteins induced by LPS were not involved in LPS-stimulated IκBα degradation. LPS-induced IκBα degradation was inhibited by ALLN, confirming that ALLN inhibits NF-κB activation by preventing IκBα degradation. Of note, HMA also inhibited LPS-induced IκBα degradation. However, tyrosine phosphorylation of IκBα itself was not elicited by LPS stimulation, suggesting that tyrosine phosphorylation of a protein(s) upstream of IκBα is required for subsequent degradation. We conclude that in HUVEC, LPS induces NF-κB-dependent genes through degradation of IκBα, not IκBβ, and propose that this degradation is induced in part by HMA-sensitive kinase(s) upstream of IκBα.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号