首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Multidrug-resistant tuberculosis (MDR-TB) is caused by bacteria that are resistant to the most effective anti TB drugs (Isoniazid and Rifampicin) with or without resistance to other drugs. Novel intervention strategies to eliminate this disease based on finding proteins can be used for designing new drugs or new and reliable kits for diagnosis. The aim of this study was to compare the protein profile of MDR-TB with sensitive isolates. Two-dimensional gel electrophoresis (2DE) along with mass spectrometry is a powerful and effective tool to identification and characterization of Mycobacterium tuberculosis. Two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for diagnosis and comparison of proteins. We identified 14 protein spots in MDR-TB isolates that 2DE analysis showed these spots absent in M. tuberculosis sensitive isolates (Rv1876, Rv0379, Rv0147, Rv2031c, Rv3597c, Rv1886c, MT0493, Rv0440, Rv3614c, Rv1626, Rv0443, Rv0475, Rv3057 and unknown protein. The results showed 22 protein spots which were up regulated (or expressed) by the MDR-TB isolates, (Rv1240, Rv3028c, Rv2971, Rv2114c, Rv3311, Rv3699, Rv1023, Rv1308, Rv3774, Rv0831c, Rv2890c, Rv1392, Rv0719, Rv0054, Rv3418c, Rv0462, Rv2215, Rv2986c, Rv3248c and Rv1908c)). Two up regulated protein spots were identified in sensitive isolate (Rv1133c and Rv0685). These data will provide valuable clues in further investigation for suitable TB rapid tests or drug targets against drug resistant and sensitive of M. tuberculosis.  相似文献   

2.
To examine the virulence factors of Mycobacterium tuberculosis H37Rv, the proteome was used to characterize the differences in protein expression between virulent M. tuberculosis H37Rv and attenuated M. tuberculosis H37Ra. Two-dimensional gel electrophoresis was performed to separate culture supernatant proteins extracted from M. tuberculosis H37Rv and M. tuberculosis H37Ra. The protein spots of interest were identified by mass spectrometry, and then the genes encoding the identified proteins were cloned and sequenced. Comparison of silver-stained gels showed that three well-resolved protein spots were present in M. tuberculosis H37Rv but absent from M. tuberculosis H37Ra. Protein spot no. 1 was identified as Rv2346c. Protein spot no. 2 was identified as Rv2347c, Rv1197, Rv1038c, and Rv3620c, which shared significant homology and had the same peptide fingerprinting using tryptic digestion. No M. tuberculosis protein matched protein spot no. 3. Rv2346c, Rv2347c, Rv1038c, and Rv3620c of M. tuberculosis H37Rv were located on the M. tuberculosis H37Ra chromosome, and multiple mutations were observed in the corresponding areas of M. tuberculosis H37Ra. Codon 59 (CAG, Gln) of Rv2347c and Rv3620c was replaced by termination codon (TAG) in M. tuberculosis H37Ra, which probably terminated the polypeptide elongation. These results demonstrate the importance of studying the gene products of M. tuberculosis and show that subtle differences in isogenic mutant strains might play an important role in identifying the attenuating mutations.  相似文献   

3.
4.
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.  相似文献   

5.
目的:构建结核分枝杆菌(MTB)Rv1759c结构域(Rv1759cD domain,Rv1759cD)与人IL-2(hIL-2)融合基因,并在大肠杆菌中表达获得重组的融合蛋白Rv1759cD-IL-2。方法:用PCR方法从MTB H37Rv基因组扩增Rv1759cD基因片段,测序后与hIL-2基因构建融合基因,并克隆到表达载体pProEX HTa。融合基因在大肠杆菌DH5α中诱导表达,经SDS-PAGE分析后,分别与His mAb、IL-2mAb和结核病人血清进行Western-blot鉴定,采用Ni-NTA亲和层析纯化蛋白。结果:获得的Rv1759cD基因经测序与GenBank公布的序列完全一致,与hIL-2基因连接后,构建的融合基因在大肠杆菌中有效表达。表达蛋白相对分子量为30KDAa,与预测值相符;Western-blot结果显示,在相对分子量30KDAa处分别与His mAb和鼠抗IL-2 mAb形成结合带,并与结核病人血清出现特异性结合。通过Ni-NTA亲和层析,可得到纯化的目的蛋白。结论:成功表达、纯化和鉴定了Rv1759cD-IL-2融合蛋白,并有可能作为新型结核病疫苗的靶抗原。  相似文献   

6.
目的:用原核系统表达结核分枝杆菌Rv3425蛋白并纯化,评价该重组蛋白在结核病血清学诊断方面的价值。方法:以结核分枝杆菌H37Rv株基因组为模板,PCR扩增得到Rv3425基因序列,克隆至表达载体pET-28a中,转入大肠杆菌BL21(DE3)进行诱导、表达后纯化,用Western印迹和ELISA法进行抗原性初步评价。结果:在原核系统内经IPTG诱导表达后,Rv3425蛋白主要以包涵体形式存在,经复性和镍柱层析纯化后,纯度达95%以上;Western印迹和ELISA结果证明重组Rv3425具有较强的抗原活性;用纯化的Rv3425蛋白做抗原,临床诊断结核病人血清,阳性率达50%。结论:高纯度的Rv3425蛋白在结核病诊断方面具有很高的应用价值,可作为结核病诊断的备选抗原。  相似文献   

7.
Ectopic expression of the Mycobacterium tuberculosis PE-family gene Rv1818c, triggers apoptosis in the mammalian Jurkat T cells, which is blocked by anti-apoptotic protein Bcl-2. Although complete overlap is not observed, a considerable proportion of cellular pools of ectopically expressed Rv1818c localizes to mitochondria. However, recombinant Rv1818c does not trigger release of cytochrome c from isolated mitochondria even though Rv1818c protein induced apoptosis of Jurkat T cells. Apoptosis induced by Rv1818c is blocked by the broad-spectrum caspase inhibitory peptide zVAD-FMK. Unexpectedly, Rv1818c-induced apoptosis is not blocked in a Jurkat sub-clone deficient for caspase-8 (JI 9.2) or in cells where caspase-9 function is inhibited or expression of caspase-9 reduced by siRNA, arguing against a central role for these caspases in Rv1818c-induced apoptotic signaling. Depleting cellular pools of the mitochondrial protein Smac/DIABLO substantially reduces apoptosis consistent with mitochondrial involvement in this death pathway. We present evidence that Rv1818c-induced apoptosis is blocked by the co-transfection of an endogenous inhibitor of caspase activation, XIAP in T cells. Additionally, Rv1818c is released into extracellular environment via exosomes secreted by M. tuberculosis infected BM-DC's and macrophages. Furthermore, the extracellular Rv1818c protein can be detected in T cells co-cultured with infected BM-DC's. Taken together, these data suggest that Rv1818c-induced apoptotic signaling is likely regulated in part by the Smac-dependent activation of caspases in T cells.  相似文献   

8.
9.
Mycobacterium tuberculosis profoundly exploits protein phosphorylation events carried out by serine/threonine protein kinases (STPKs) for its survival and pathogenicity. Forkhead-associated domains (FHA), the phosphorylation-responsive modules, have emerged as prominent players in STPK mediated signaling. In this study, we demonstrate the association of the previously uncharacterized FHA domain-containing protein Rv0019c with cognate STPK PknB. The consequent phosphorylation of Rv0019c is shown to be dependent on the conserved residues in the Rv0019c FHA domain and activation loop of PknB. Furthermore, by creating deletion mutants we identify Thr36 as the primary phosphorylation site in Rv0019c. During purification of Rv0019c from Escherichia coli, the E. coli protein chloramphenicol acetyltransferase (CAT) specifically and reproducibly copurifies with Rv0019c in a FHA domain-dependent manner. On the basis of structural similarity of E. coli CAT with M. tuberculosis PapA5, a protein involved in phthiocerol dimycocerosate biosynthesis, PapA5 is identified as an interaction partner of Rv0019c. The interaction studies on PapA5, purified as an unphosphorylated protein from E. coli, with Rv0019c deletion mutants reveal that the residues N-terminal to the functional FHA domain of Rv0019c are critical for formation of the Rv0019c-PapA5 complex and thus constitute a previously unidentified phosphoindependent binding motif. Finally, PapA5 is shown to be phosphorylated on threonine residue(s) by PknB, whereas serine/threonine phosphatase Mstp completely reverses the phosphorylation. Thus, our data provides initial clues for a possible regulation of PapA5 and hence the phthiocerol dimycocerosate biosynthesis by PknB, either by direct phosphorylation of PapA5 or indirectly through Rv0019c.  相似文献   

10.
【目的】START家族蛋白的突变或者错误表达使哺乳动物产生肾上腺皮质增生、乳腺癌和结肠癌等疾病;START家族蛋白是植物发育过程中重要的调节因子;尚未阐明START家族蛋白作为细菌必需基因的作用机制。结核分枝杆菌必需基因Rv0164属于START家族,功能未知,研究Rv0164作用机制将为START家族分子机制增添新理论。【方法】生物信息学方法分析Rv0164序列特征;模式菌耻垢分枝杆菌中表达Rv0164并分析蛋白的细胞定位;Co-immunoprecipitation(Co-IP)方法垂钓Rv0164的相互作用蛋白,质谱鉴定互作蛋白,酵母双杂交和Pull down验证蛋白相互作用。【结果】Rv0164的N端17个氨基酸在分枝杆菌中不保守;Rv0164无信号肽;Rv0164定位在细胞质中,受蛋白降解机制调控,该机制在细菌生长平台期比对数期活性弱;N端缺失使Rv0164在平台期和对数期均不稳定;Rv0164结合多个胞内蛋白。【结论】Rv0164的N端肽段增加了蛋白的稳定性;Rv0164是一个胞内蛋白;Rv0164能够结合细菌生存必需蛋白。  相似文献   

11.
12.
本研究体外克隆了结核分枝杆菌Rv0859基因, 融合表达并纯化了Rv0859蛋白。首先提取H37Rv标准菌株中的基因组DNA, 设计Rv0859基因两端的引物, 以H37Rv基因组DNA为模板通过PCR方法扩增Rv0859基因。用Hind III和BamHⅠ两种限制性内切酶双切Rv0859基因, T4连接酶连接到pET30载体上, 再转入大肠杆菌JF1125中, 经过筛选鉴定后抽提质粒测序, 得到重组正确载体, 转化到表达宿主大肠杆菌BL21中。用IPTG进行诱导表达, 通过聚丙酰胺凝胶电泳(SDS-PAGE)及质谱鉴定重组表达蛋白。0.05 mol/L浓度的IPTG 37°C诱导4 h重组蛋白的表达量最高。制备重组蛋白的多克隆抗体, 通过亚细胞分离及Western-blotting分析蛋白的亚细胞定位。结果成功地构建原核表达载体pET30a-Rv0859, 并获得47845 D左右的大量表达的Rv0859蛋白, Western-blotting结果表明Rv0859蛋白主要定位于细胞膜中, 微量存在于细胞壁中, 为进一步的Rv0859蛋白功能研究奠定了一定的基础。  相似文献   

13.
Rv2742是本课题组前期基于蛋白质基因组学策略从结核分枝杆菌Mycobacteriumtuberculosis H37Rv中发现、鉴定的遗漏注释基因。文中旨在建立结核分枝杆菌H37Rv漏注释蛋白Rv2742的可溶性诱导表达、纯化体系,为进一步探索Rv2742基因参与的生物学功能奠定基础。前期实验发现构建的pGEX-4T-2-Rv2742、pET-28a-Rv2742、pET-32a-Rv2742及pMAL-c2X-Rv2742原核表达载体均无法实现目的蛋白的诱导表达。但经密码子优化后,仅有pMAL-c2X-Rv2742载体能够实现目的蛋白的可溶性诱导表达。此外,通过比较不同宿主菌、温度及IPTG浓度对目的蛋白表达量的影响,发现目的蛋白在Rosetta (DE3)中,16℃及0.5mmol/LIPTG诱导条件下表达量最高。直链淀粉树脂(Amyloseresin)亲和层析柱纯化获得较纯的产物,经LC-MS/MS验证确认是Rv2742融合蛋白肽段序列。成功获得结核分枝杆菌H37Rv新基因Rv2742的重组蛋白,可进一步开展其潜在相互作用及免疫原性研究工作。  相似文献   

14.
15.
16.
Fifty-six clinical isolates of Mycobacterium tuberculosis were analyzed by spoligotyping to determine the prevalence of W-Beijing strains. Forty-nine of the 56 isolates belonged to W-Beijing strains and 7 isolates were non-Beijing strains. Comparative two-dimensional gel electrophoresis analysis of protein patterns between the W-Beijing and non-Beijing strains identified a unique protein Rv0927c that is absent in the former but present in the latter and the reference strain M. tuberculosis H37Rv. Compared with 7 non-Beijing clinical isolates and H37Rv, all 49 W-Beijing strains had two characteristic mutations, a deletion of AGC at nucleotide position 421 of Rv0927c gene encoding a putative short dehydrogenase/reductase, causing deletion of serine codon at amino acid position 141 and a -127 G-->A mutation in Rv0927c-pstS3 intergenic region, resulting in failure to express Rv0927c. Western blot analysis indicated that polyclonal antibody raised against H37Rv Rv0927c overexpressed in Escherichia coli reacted with non-Beijing strains and H37Rv but not W-Beijing strains. Characteristic mutations of Rv0927c that are present in W-Beijing strains can be used as a novel genetic marker for rapid molecular typing of M. tuberculosis W-Beijing strains.  相似文献   

17.
The homology model of protein Rv2579 from Mycobacterium tuberculosis H37Rv was compared with the crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26, and this analysis revealed that 6 of 19 amino acid residues which form an active site and entrance tunnel are different in LinB and Rv2579. To characterize the effect of replacement of these six amino acid residues, mutations were introduced cumulatively into the six amino acid residues of LinB. The sixfold mutant, which was supposed to have the active site of Rv2579, exhibited haloalkane dehalogenase activity with the haloalkanes tested, confirming that Rv2579 is a member of the haloalkane dehalogenase protein family.  相似文献   

18.
Owens CP  Du J  Dawson JH  Goulding CW 《Biochemistry》2012,51(7):1518-1531
The secreted Mycobacterium tuberculosis (Mtb) heme binding protein Rv0203 has been shown to play a role in Mtb heme uptake. In this work, we use spectroscopic (absorption, electron paramagnetic resonance, and magnetic circular dichrosim) methods to further characterize the heme coordination environments of His-tagged and native protein forms, Rv0203-His and Rv0203-notag, respectively. Rv0203-His binds the heme molecule through bis-His coordination and is low-spin in both ferric and ferrous oxidation states. Rv0203-notag is high-spin in both oxidation states and shares spectroscopic similarity with pentacoordinate oxygen-ligated heme proteins. Mutagenesis experiments determined that residues Tyr59, His63, and His89 are required for Rv0203-notag to efficiently bind heme, reinforcing the hypothesis based on our previous structural and mutagenesis studies of Rv0203-His. While Tyr59, His63, and His89 are required for the binding of heme to Rv0203-notag, comparison of the absorption spectra of the Rv0203-notag mutants suggests the heme ligand may be the hydroxyl group of Tyr59, although an exogenous hydroxide cannot be ruled out. Additionally, we measured the heme affinities of Rv0203-His and Rv0203-notag using stopped flow techniques. The rates for binding of heme to Rv0203-His and Rv0203-notag are similar, 115 and 133 μM(-1) s(-1), respectively. However, the heme off rates differ quite dramatically, whereby Rv0203-His gives biphasic dissociation kinetics with fast and slow rates of 0.0019 and 0.0002 s(-1), respectively, and Rv0203-notag has a single off rate of 0.082 s(-1). The spectral and heme binding affinity differences between Rv0203-His and Rv0203-notag suggest that the His tag interferes with heme binding. Furthermore, these results imply that the His tag has the ability to stabilize heme binding as well as alter heme ligand coordination of Rv0203 by providing an unnatural histidine ligand. Moreover, the heme affinity of Rv0203-notag is comparable to that of other heme transport proteins, implying that Rv0203 may act as an extracellular heme transporter.  相似文献   

19.
Li J  Shi C  Gao Y  Wu K  Shi P  Lai C  Chen L  Wu F  Tian C 《Journal of molecular biology》2012,415(2):382-392
Rv0899 from Mycobacterium tuberculosis belongs to the OmpA (outer membrane protein A) family of outer membrane proteins. It functions as a pore-forming protein; the deletion of this gene impairs the uptake of some water-soluble substances, such as serine, glucose, and glycerol. Rv0899 has also been shown to play a part in low-pH environment adaption, which may play a part in pathogenic mycobacteria overcoming the host's defense mechanisms. Based on many bacterial physiological data and recent structural studies, it was proposed that Rv0899 forms an oligomeric channel to carry out such functions. In this work, biochemical and structural data obtained from solution NMR and EPR spectroscopy indicated that Rv0899 is a monomeric membrane-anchoring protein with two separate domains, rather than an oligomeric pore. Using NMR chemical shift perturbation and isothermal calorimetric titration assays, we show that Rv0899 was able to interact with Zn(2+) ions, which may indicate a role for Rv0899 in the process of Zn(2+) acquisition.  相似文献   

20.
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a 'dormancy associated translation inhibitor' or DATIN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号