首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Background

CD44 is a major cellular receptor for hyaluronic acids. The stem structure of CD44 encoded by ten normal exons can be enlarged by ten variant exons (v1-v10) by alternative splicing. We have succeeded in preparing MV5 fully human IgM and its class-switched GV5 IgG monoclonal antibody (mAb) recognizing the extracellular domain of a CD44R1 isoform that contains the inserted region coded by variant (v8, v9 and v10) exons and is expressed on the surface of various human epithelial cancer cells.

Methods and Principal Findings

We demonstrated the growth inhibition of human cancer xenografts by a GV5 IgG mAb reshaped from an MV5 IgM. The epitope recognized by MV5 and GV5 was identified to a v8-coding region by the analysis of mAb binding to various recombinant CD44 proteins by enzyme-linked immunosorbent assay. GV5 showed preferential reactivity against various malignant human cells versus normal human cells assessed by flow cytometry and immunohistological analysis. When ME180 human uterine cervix carcinoma cells were subcutaneously inoculated to athymic mice with GV5, significant inhibition of tumor formation was observed. Furthermore, intraperitoneal injections of GV5markedly inhibited the growth of visible established tumors from HSC-3 human larynx carcinoma cells that had been subcutaneously transplanted one week before the first treatment with GV5. From in vitro experiments, antibody-dependent cellular cytotoxicity and internalization of CD44R1 seemed to be possible mechanisms for in vivo anti-tumor activity by GV5.

Conclusions

CD44R1 is an excellent molecular target for mAb therapy of cancer, possibly superior to molecules targeted by existing therapeutic mAb, such as Trastuzumab and Cetuximab recognizing human epidermal growth factor receptor family.  相似文献   

2.
Basophils, which are the rarest granulocytes, play crucial roles in protective immunity against parasites and development of allergic disorders. Although immunoglobulin (Ig)E-dependent responses via receptor for IgE (FcεRI) in basophils have been extensively studied, little is known about cell surface molecules that are selectively expressed on this cell subset to utilize the elimination in vivo through treatment with monoclonal antibody (mAb). Since CD200 receptor 3 (CD200R3) was exclusively expressed on basophils and mast cells (MCs) using a microarray screening, we have generated anti-CD200R3 mAb recognizing CD200R3A. In this study we examined the expression pattern of CD200R3A on leukocytes, and the influence of the elimination of basophils by anti-CD200R3A mAb on allergic responses. Flow cytometric analysis showed that CD200R3A was primarily expressed on basophils and MCs, but not on other leukocytes. Administration with anti-CD200R3A mAb led to the prominent specific depletion of tissue-resident and circulating basophils, but not MCs. Furthermore, in vivo depletion of basophils ameliorated IgE-mediated systemic and local anaphylaxis. Taken together, these findings suggest that CD200R3A is reliable cell surface marker for basophils in vivo, and targeting this unique molecule with mAb for the elimination of basophils may serve as a novel therapeutic strategy in ameliorating the allergic diseases.  相似文献   

3.
IntroductionProstate and breast cancer are the most prevalent primary malignant human tumors globally. Prostatectomy and breast conservative surgery remain the most common definitive treatment option for the >500,000 men and women newly diagnosed with localized prostate and breast cancer each year only in the US. Morphological examination is the mainstay of diagnosis but margin under-sampling of the excised cancer tissue may lead to local recurrence. In despite of the progress of non-invasive optical imaging, there is still a clinical need for targeted optical imaging probes that could rapidly and globally visualize cancerous tissues.MethodsElevated expression of junctional adhesion molecule-A (JAM-A) on tumor cells and its multiple pro-tumorigenic activity make the JAM-A a candidate for molecular imaging. Near-infrared imaging probe, which employed anti-JAM-A monoclonal antibody (mAb) phthalocyanine dye IR700 conjugates (JAM-A mAb/IR700), was synthesized and used to identify and visualize heterotopic human prostate and breast tumor mouse xenografts in vivo.ResultsThe intravenously injected JAM-A mAb/IR700 conjugates enabled the non-invasive detection of prostate and breast cancerous tissue by fluorescence imaging. A single dose of JAM-A mAb/IR700 reduced number of mitotic cancer cells in vivo, indicating theranostic ability of this imaging agent. The JAM-A mAb/IR700 conjugates allowed us to image a specific receptor expression in prostate and breast tumors without post-image processing.ConclusionThis agent demonstrates promise as a method to image the extent of prostate and breast cancer in vivo and could assist with real-time visualization of extracapsular extension of cancerous tissue.  相似文献   

4.
5.
The localization and target sites of tea catechins underlying their biological activity including anti-atherosclerotic activity have not yet been fully understood. To identify the target sites of catechins in vivo, we have developed a novel monoclonal antibody (mAb5A3) specific for (−)-epicatechin-3-gallate (ECg), one of the major tea catechins. The immunoreactive materials with mAb5A3 were detected in the human atherosclerotic lesions but not in the normal aorta, and were specifically localized in the macrophage-derived foam cells. In vitro experiments using macrophage-like cell lines also showed the significant accumulation of ECg in the cells. We also demonstrated that ECg could suppress the gene expression of a scavenger receptor CD36, a key molecule for foam cell formation, in macrophage cells. These results, for the first time, showed the target site of a tea component ECg in the aorta and might provide a mechanism for the anti-atherosclerotic actions of the catechins.  相似文献   

6.
Plasmacytoid dendritic cells (pDCs) play a central role for both innate and adaptive antiviral responses, as they direct immune responses through their unique ability to produce substantial concentrations of type I interferon (IFNs) upon viral encounter while also activating multiple immune cells, including macrophages, DCs, B, natural killer and T cells. Recent evidence clearly indicates that pDCs also play a crucial role in some cancers and several auto-immune diseases. Although treatments are currently available to patients with such pathologies, many are not fully efficient. We are proposing here, as a new targeted-based therapy, a novel chimeric monoclonal antibody (mAb) that mediates a strong cellular cytotoxicity directed against a specific human pDC marker, CD303. This antibody, ch122A2 mAb, is characterized by low fucose content in its human IgG1 constant (Fc) region, which induces strong in vitro and in vivo activity against human pDCs. We demonstrated that this effect relates in part to its specific Fc region glycosylation pattern, which increased affinity for CD16/FcγRIIIa. Importantly, ch122A2 mAb induces the down-modulation of CpG-induced IFN-α secretion by pDCs. Additionally, ch122A2 mAb shows in vitro high pDC depletion mediated by antibody-dependent cell-mediated cytotoxicity and antibody-dependent cellular phagocytosis. Remarkably, in vivo ch122A2 mAb efficacy is also demonstrated in humanized mice, resulting in significant pDC depletion in bloodstream and secondary lymphoid organs such as spleen. Together, our data indicates that ch122A2 mAb could represent a promising cytotoxic mAb candidate for pathologies in which decreasing type I IFNs or pDCs depleting may improve patient prognosis.  相似文献   

7.

Background

The recently described Designed Ankyrin Repeat Protein (DARPin) technology can produce highly selective ligands to a variety of biological targets at a low production cost.

Methodology/Principal Findings

To investigate the in vivo use of DARPins for future application to novel anti-HIV strategies, we identified potent CD4-specific DARPins that recognize rhesus CD4 and followed the fate of intravenously injected CD4-specific DARPin 57.2 in rhesus macaques. The human CD4-specific DARPin 57.2 bound macaque CD4+ cells and exhibited potent inhibitory activity against SIV infection in vitro. DARPin 57.2 or the control E3_5 DARPin was injected into rhesus macaques and the fate of cell-free and cell-bound CD4-specific DARPin was evaluated. DARPin-bound CD4+ cells were detected in the peripheral blood as early as 30 minutes after the injection, decreasing within 6 hours and being almost undetectable within 24 hours. The amount of DARPin bound was dependent on the amount of DARPin injected. CD4-specific DARPin was also detected on CD4+ cells in the lymph nodes within 30 minutes, which persisted with similar kinetics to blood. More extensive analysis using blood revealed that DARPin 57.2 bound to all CD4+ cell types (T cells, monocytes, dendritic cells) in vivo and in vitro with the amount of binding directly proportional to the amount of CD4 on the cell surface. Cell-free DARPins were also detected in the plasma, but were rapidly cleared from circulation.

Conclusions/Significance

We demonstrated that the CD4-specific DARPin can rapidly and selectively bind its target cells in vivo, warranting further studies on possible clinical use of the DARPin technology.  相似文献   

8.
Tau truncation occurs at early stages during the development of human Alzheimer's disease (AD) and other tauopathy dementias. Tau cleavage, particularly in its N-terminal projection domain, is able to drive per se neurodegeneration, regardless of its pro-aggregative pathway(s) and in fragment(s)-dependent way. In this short review, we highlight the pathological relevance of the 20-22 kDa NH2-truncated tau fragment which is endowed with potent neurotoxic “gain-of-function” action(s), both in vitro and in vivo. An extensive comment on its clinical value as novel progression/diagnostic biomarker and potential therapeutic target in the context of tau-mediated neurodegeneration is also provided.  相似文献   

9.

Introduction

Targeting the CD20 antigen has been a successful therapeutic intervention in the treatment of rheumatoid arthritis (RA). However, in some patients with an inadequate response to anti-CD20 therapy, a persistence of CD20- plasmablasts is noted. The strong expression of CD319 on CD20- plasmablast and plasma cell populations in RA synovium led to the investigation of the potential of CD319 as a therapeutic target.

Methods

PDL241, a novel humanized IgG1 monoclonal antibody (mAb) to CD319, was generated and examined for its ability to inhibit immunoglobulin production from plasmablasts and plasma cells generated from peripheral blood mononuclear cells (PBMC) in the presence and absence of RA synovial fibroblasts (RA-SF). The in vivo activity of PDL241 was determined in a human PBMC transfer into NOD scid IL-2 gamma chain knockout (NSG) mouse model. Finally, the ability of PDL241 to ameliorate experimental arthritis was evaluated in a collagen-induced arthritis (CIA) model in rhesus monkeys.

Results

PDL241 bound to plasmablasts and plasma cells but not naïve B cells. Consistent with the binding profile, PDL241 inhibited the production of IgM from in vitro PBMC cultures by the depletion of CD319+ plasmablasts and plasma cells but not B cells. The activity of PDL241 was dependent on an intact Fc portion of the IgG1 and mediated predominantly by natural killer cells. Inhibition of IgM production was also observed in the human PBMC transfer to NSG mouse model. Treatment of rhesus monkeys in a CIA model with PDL241 led to a significant inhibition of anti-collagen IgG and IgM antibodies. A beneficial effect on joint related parameters, including bone remodeling, histopathology, and joint swelling was also observed.

Conclusions

The activity of PDL241 in both in vitro and in vivo models highlights the potential of CD319 as a therapeutic target in RA.  相似文献   

10.

Background

A common procedure in human cytotoxic T lymphocyte (CTL) adoptive transfer immunotherapy is to expand tumor-specific CTLs ex vivo using CD3 mAb prior to transfer. One of the major obstacles of CTL adoptive immunotherapy is a lack of CTL persistence in the tumor-bearing host after transfer. The aim of this study is to elucidate the molecular mechanisms underlying the effects of stimulation conditions on proliferation and survival of tumor-specific CTLs.

Methodology/Principal Findings

Tumor-specific CTLs were stimulated with either CD3 mAb or cognate Ag and analyzed for their proliferation and survival ex vivo and persistence in tumor-bearing mice. Although both Ag and CD3 mAb effectively induced the cytotoxic effecter molecules of the CTLs, we observed that Ag stimulation is essential for sustained CTL proliferation and survival. Further analysis revealed that Ag stimulation leads to greater proliferation rates and less apoptosis than CD3 mAb stimulation. Re-stimulation of the CD3 mAb-stimulated CTLs with Ag resulted in restored CTL proliferative potential, suggesting that CD3 mAb-induced loss of proliferative potential is reversible. Using DNA microarray technology, we identified that survivin and ifi202, two genes with known functions in T cell apoptosis and proliferation, are differentially induced between Ag- and CD3 mAb-stimulated CTLs. Analysis of the IFN-γ signaling pathway activation revealed that Ag stimulation resulted in rapid phosphorylation of STAT1 (pSTAT1), whereas CD3 mAb stimulation failed to activate STAT1. Chromatin immunoprecipitation revealed that pSTAT1 is associated with the promoters of both survivin and ifi202 in T cells and electrophoresis mobility shift assay indicated that pSTAT1 directly binds to the gamma activation sequence element in the survivin and ifi202 promoters. Finally, silencing ifi202 expression significantly decreased T cell proliferation.

Conclusions/Significance

Our findings delineate a new role of the IFN-γ signaling pathway in regulating T cell proliferation and apoptosis through upregulating survivin and ifi202 expression.  相似文献   

11.
Malaria infections display variation patterns of clinical course and outcome. Although CD4+CD25+Foxp3+ regulatory T (Treg) cells play an essential role in immune homeostasis, the immune regulatory roles involved in malaria infection remains to be elucidated. Herein, we compared the disparity in Treg cells response during the course of blood stage Plasmodium chabaudi chabaudi AS (P. c chabaudi AS) infection in DBA/2 and BALB/c mice. BALB/c mice initiated a Th1/Th2 profile respond to P. c chabaudi AS infection, but DBA/2 mice failed to control P. c chabaudi AS infection and almost of them died post-peak parasitemia. At the peak parasitemia, we found that higher proportion of Treg cells with elevated Foxp3 expression in DBA/2 than in BALB/c mice. We used anti-CD25 mAb to deplete Treg cells and found that the survival time and rate were prolonged in DBA/2 mice treated with anti-CD25 mAb. Treatment with anti-CD25 mAb in vivo led to enhanced pro-inflammation responses and Foxp3 expression decline on Treg cells. In contrast, after DBA/2 was treatment with anti-IL-10R mAb, IL-10R blockade in vivo caused excessive pro-inflammation responses and Foxp3 expression loss on CD4+CD25+ T cells. Earlier death was found in all of DBA/2 mice with anti-IL-10R mAb. It suggested that IL-2 and IL-10 signal involved in maintaining Foxp3 expression on Treg cells. In all, the moderate suppressive activity of Treg cells may facilitate resistance to P. c chabaudi AS infection.  相似文献   

12.
CD137 is an attractive target for cancer immunotherapy, but its expression in normal tissues induces some adverse effects in patients receiving CD137-targeted therapy. To overcome this issue, we developed a switch antibody, STA551, that binds to CD137 only under high ATP concentrations around cells. This study quantified biodistribution of murine switch antibodies in human CD137 knock-in mice to show the viability of the switch antibody concept in vivo. We utilized four antibodies: Sta-MB, Ure-MB, Sta-mIgG1, and KLH-MB. Sta-MB is a switch antibody having the variable region of STA551. The MB is a murine Fc highly binding to murine Fcγ receptor II. Ure-MB has a variable region mimicking the clinically available anti-CD137 agonist antibody urelumab, binding to CD137 regardless of ATP concentration. Sta-mIgG1 has the same variable region as Sta-MB but has the standard murine constant region. KLH-MB binds to keyhole limpet hemocyanin. The four antibodies were radiolabeled with In-111, SPECT/CT imaging was conducted in human CD137 knock-in mice, and the uptake in regions of interest was quantified. 111In-labeled Sta-MB and Sta-mIgG1 showed high uptake in tumors but low uptake in the lymph nodes and spleen in human CD137 knock-in mice. On the other hand, Ure-MB highly accumulated not only in tumors but also in the lymph nodes and spleen. KLH-MB showed low uptake in the tumors, lymph nodes, and spleen. The present study provides evidence that the switch antibody concept works in vivo. Our findings encourage further clinical imaging studies to evaluate the biodistribution of STA551 in patients.  相似文献   

13.
Background aimsThe number of hematopoietic stem cells (HSCs) is critical for transplantation. The ex vivo expansion of mobilized peripheral blood (MPB) HSCs is of clinical value for reconstitution to meet clinical need.MethodsThis study proposed a simple, defined, stromal-free and serum-free culture system (SF-HSC medium) for clinical use, which is composed of Iscove's modified Dulbecco's medium, cytokine cocktails and serum substitutes. This study also characterized the cellular properties of expanded MPB CD133+ HSCs from patients with hematologic malignancies and healthy donors by surface antigen, colony-forming cell, long-term culture-initiating cell, gene expression and in vivo engraftment assays.ResultsThe expanded fold values of CD45+ white blood cells and CD34+, CD133+, CD34+CD38?, CD133+CD38?, CD34+CD133+, colony-forming and long-term culture-initiating cells at the end of 7-day culture from CD133+ MPB of hematologic malignancies were 9.4-fold, 5.9-fold, 4.0-fold, 35.8-fold, 21.9-fold, 3.8-fold, 11.8-fold and 6.7-fold, and values from healthy donor CD133+ MPB were 20.7-fold, 14.5-fold, 8.5-fold, 83.8-fold, 37.3-fold, 6.2-fold, 19.1-fold and 14.6-fold. The high enrichment of CD38? cells, which were either CD34+ or CD133+, sustained the proliferation of early uncommitted HSCs. The expanded cells showed high levels of messenger RNA expression of HOBX4, ABCG2 and HTERT and had the in vivo ability to re-populate NOD/SCID mice.ConclusionsOur results demonstrated that an initial, limited number of MPB CD133+ HSCs could be expanded functionally in SF-HSC medium. We believe that this serum-free expansion technique can be employed in both basic research and clinical transplantation.  相似文献   

14.
15.
Recent advances in cancer biology have revealed that many malignancies possess a hierarchal system, and leukemic stem cells (LSC) or leukemia-initiating cells (LIC) appear to be obligatory for disease progression. Acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia characterized by the formation of a PML-RARα fusion protein, leads to the accumulation of abnormal promyelocytes. In order to understand the precise mechanisms involved in human APL leukemogenesis, we established a humanized in vivo APL model involving retroviral transduction of PML-RARA into CD34+ hematopoietic cells from human cord blood and transplantation of these cells into immunodeficient mice. The leukemia well recapitulated human APL, consisting of leukemic cells with abundant azurophilic abnormal granules in the cytoplasm, which expressed CD13, CD33 and CD117, but not HLA-DR and CD34, were clustered in the same category as human APL samples in the gene expression analysis, and demonstrated sensitivity to ATRA. As seen in human APL, the induced APL cells showed a low transplantation efficiency in the secondary recipients, which was also exhibited in the transplantations that were carried out using the sorted CD34 fraction. In order to analyze the mechanisms underlying APL initiation and development, fractionated human cord blood was transduced with PML-RARA. Common myeloid progenitors (CMP) from CD34+/CD38+ cells developed APL. These findings demonstrate that CMP are a target fraction for PML-RARA in APL, whereas the resultant CD34 APL cells may share the ability to maintain the tumor.  相似文献   

16.
Bispecific antibodies constitute a valuable class of therapeutics owing to their ability to bind 2 distinct targets. Dual targeting is thought to enhance biological efficacy, limit escape mechanisms, and increase target selectivity via a strong avidity effect mediated by concurrent binding to both antigens on the surface of the same cell. However, factors that regulate the extent of target selectivity are not well understood. We show that dual targeting alone is not sufficient to promote efficient target selectivity, and report the substantial roles played by the affinity of the individual arms, overall avidity and valence. More particularly, various monovalent bispecific IgGs composed of an anti-CD70 moiety paired with variants of the anti-CD4 mAb ibalizumab were tested for preferential binding and selective depletion of CD4+/CD70+ T cells over cells expressing only one of the target antigens that resulted from antibody dependent cell-mediated cytotoxicity. Variants exhibiting reduced CD4 affinity showed a greater degree of target selectivity, while the overall efficacy of the bispecific molecule was not affected.  相似文献   

17.
Flavonoid-rich diets are expected to decrease the risk of cardiovascular diseases. The localization and target sites of flavonoids underlying the protective mechanism in vivo have not been fully investigated because the methods for detection of flavonoids have been limited to chemical analysis such as high-performance liquid chromatography. To further understand the actions of flavonoids in vivo, we developed a novel methodology that immunochemically evaluates flavonoids using specific antibodies. Quercetin-3-glucuronide (Q3GA), a major metabolite in human plasma, was coupled with keyhole limpet hemocyanin. Alternatively, the sugar moiety of quercetin-3-glucoside (Q3G) was succinylated and then coupled with a carrier protein. Using these two immunogens, we finally obtained two monoclonal antibodies, mAb14A2 and mAb11G6, from the immunogen using Q3GA and Q3G, respectively. Competitive enzyme-linked immunosorbent assay showed the unique difference in the specificity between the two similar antibodies: mAb14A2 recognized several quercetin-3-glycosides including Q3G and rutin but mAb11G6 was highly specific to the Q3G structure. The macrophage-derived foam cells in human atherosclerotic lesions were significantly stained with mAb14A2 but scarcely with mAb11G6. These results showed that the anti-flavonoid glycoside antibodies are useful tools for evaluating their localization in tissues and that the specificities strongly depend on the immunogen design for synthesizing the hapten-protein conjugates.  相似文献   

18.
Although immunotherapy (anti-PD-1/PD-L1 antibodies) has been approved for clinical treatment of lung cancer, only a small proportion of patients respond to monotherapy. Hence, understanding the regulatory mechanism of PD-L1 is particularly important to identify optimal combinations. In this study, we found that inhibition of CDK5 induced by shRNA or CDK5 inhibitor leads to reduced expression of PD-L1 protein in human lung adenocarcinoma cells, while the mRNA level is not substantially altered. The PD-L1 protein degradation is mediated by E3 ligase TRIM21 via ubiquitination-proteasome pathway. Subsequently, we studied the function of CDK5/PD-L1 axis in LUAD. In vitro, the absence of CDK5 in mouse Lewis lung cancer cell (LLC) has no effect on cell proliferation. However, the attenuation of CDK5 or combined with anti-PD-L1 greatly suppresses tumor growth in LLC implanted mouse models in vivo. Disruption of CDK5 elicits a higher level of CD3+, CD4+ and CD8+ T cells in spleens and lower PD-1 expression in CD4+ and CD8+ T cells. Our findings highlight a role for CDK5 in promoting antitumor immunity, which provide a potential therapeutic target for combined immunotherapy in LUAD.  相似文献   

19.
Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human “repeat” mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.  相似文献   

20.
The migration of CD4+ T cells plays an important role in arteriosclerosis obliterans (ASO). However, the molecular mechanisms involved in CD4+ T cell migration are still unclear. The current study is aimed to determine the expression change of miR-142-3p in CD4+ T cells from patients with ASO and investigate its role in CD4+ T cell migration as well the potential mechanisms involved. We identified by qRT-PCR and in situ hybridization that the expression of miR-142-3p in CD4+ T cells was significantly down-regulated in patients with ASO. Chemokine (C-X-C motif) ligand 12 (CXCL12), a common inflammatory chemokine under the ASO condition, was able to down-regulate the expression of miR-142-3p in cultured CD4+ T cells. Up-regulation of miR-142-3p by lentivirus-mediated gene transfer had a strong inhibitory effect on CD4+ T cell migration both in cultured human cells in vitro and in mouse aortas and spleens in vivo. RAC1 and ROCK2 were identified to be the direct target genes in human CD4+ T cells, which are further confirmed by dual luciferase assay. MiR-142-3p had strong regulatory effects on actin cytoskeleton as shown by the actin staining in CD4+ T cells. The results suggest that the expression of miR-142-3p is down-regulated in CD4+ T cells from patients with ASO. The down-regulation of miR-142-3p could increase the migration of CD4+ T cells to the vascular walls by regulation of actin cytoskeleton via its target genes, RAC1 and ROCK2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号