首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang  Bin  Li  Pan  Su  Tongbing  Li  Peirong  Xin  Xiaoyun  Wang  Weihong  Zhao  Xiuyun  Yu  Yangjun  Zhang  Deshuang  Yu  Shuancang  Zhang  Fenglan 《Journal of Plant Growth Regulation》2020,39(1):72-86

The wall-associated kinase (WAK) gene family, a subfamily of the receptor-like kinase (RLK) gene family, is associated with the cell wall in plants, and has vital functions in cell expansion, pathogen resistance, and heavy metal stress tolerance because of their roles of the extracellular environment sensors to trigger intracellular signals in Arabidopsis. In the present study, 96 Chinese cabbage (Brassica rapa ssp. pekinensis) BrWAK gene family members were identified from the B. rapa genome using a reiterative database search and manual confirmation. The protein domain characterization, gene structure analysis, and phylogenetic analysis of the BrWAKs classified them into three gene groups. Comparative genomic analysis between WAK genes from Chinese cabbage and Arabidopsis revealed that the BrWAK genes have undergone the gene expansion and deletion events during evolution. Furthermore, the conserved motifs in the kinase domains of the WAK proteins and eukaryotic protein kinase family proteins were compared and some non-RD kinase proteins among the BrWAKs were identified. Ultimately, expression analysis of BrWAK genes in six tissues and under various stress conditions revealed that some tissue-specific WAK genes might function in callus cell growth and reproduction process; Bra012273, Bra016426, Bra016427, and Bra025882 might be involved in downy mildew resistance and high humidity stress; Bra012273, Bra025882, and Bra025883 might be responded to drought and heat stress. Taken together, this research was identified and classified the WAK gene family in Chinese cabbage and provided valuable resources to explore the potential roles of BrWAK genes in plant development and stress responses.

  相似文献   

2.

Key message

A novel dominant resistance gene, TuRB07, was found to confer resistance to an isolate of TuMV strain C4 in B. rapa line VC1 and mapped on the top of chromosome A06.

Abstract

The inheritance of resistance to Turnip mosaic virus in Brassica rapa was investigated by crossing the resistant line, VC1 with the susceptible line, SR5, and genotyping and phenotyping diverse progenies derived from this cross. Both a doubled haploid population, VCS3M-DH, an F2 and two BC1 (F1 × VC1 and F1 × SR5) populations were created. Population tests revealed that the resistance to the TuMV C4 isolate in B. rapa is controlled by a single dominant gene. This resistance gene, TuRB07 was positioned on the top of linkage group A06 of the B. rapa genome through bulk segregation analysis and fine mapping recombinants in three doubled haploid- and one backcross population using microsatellite markers developed from BAC end sequences. Within the region between the two closely linked markers flanking TuRB07, H132A24-s1, and KS10960, in the Chiifu reference genome, two genes encoding nucleotide-binding site and leucine-rich repeat proteins with a coiled-coil motif (CC-NBS-LRR), Bra018862 and Bra018863 were identified as candidate resistance genes. The gene Bra018862 is truncated, but the gene Bra018863 has all the domains to function. Furthermore, the analysis of structural variation using resequencing data of VC1 and SR5 revealed that Bra018863 might be a functional gene because the gene has no structural variation in the resistant line VC1 when compared with Chiifu, whereas at the other NBS-LRR genes large deletions were identified in the resistant line. Allelic differences of Bra018863 were found between VC1 and SR5, supporting the notion that this gene is a putative candidate gene for the virus resistance.  相似文献   

3.
4.
5.
Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), have both predicted AGP-like glycosylated regions and putative fasciclin (FAS) domains, which may function in cell adhesion and communication. Previous studies have identified 21, 27, and 34 FLAs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), respectively. In this study, we identified 33 FLAs in the annotated genome of Chinese cabbage (Brassica rapa ssp. pekinensis line Chiifu-401-42). Sequence analysis indicated that FAS domains each contain two highly conserved regions, named H1 and H2, and that 17 FLAs from B. rapa (BrFLAs) possess both of these regions. Prediction of glycosylphosphatidylinositol (GPI) modification sites suggested that 15 BrFLAs were GPI-anchored to the plasma membrane. Additionally, 25 BrFLAs may have been duplicated during the processes that shaped the triplicated genome of the mesopolyploid B. rapa. Expression analyses indicated that BrFLA1, BrFLA11, BrFLA13, BrFLA28 and BrFLA32 were specifically expressed in inflorescence. Meanwhile, BrFLA9 (homologous to AtFLA12) is specifically expressed in stem, and BrFLA6/22 (homologous to AtFLA11) is also highly expressed in stem, suggesting BrFLA6/9/22 may have the same functions as AtFLA11/12 in A. thaliana. Taken together, the identification and bioinformatic analysis of FLAs in B. rapa will open the way for studying their biological functions in plant growth and development as well as evolutionary history of this gene family from A. thaliana to B. rapa.  相似文献   

6.
The protein storage vacuole (PSV) is a specialized organelle in plant seeds that accumulates storage proteins and phytate during seed development. In many plant species, such as tomato and tobacco, the PSV contains two types of microscopically visible intra-organellar inclusions: a large crystalline lattice of membranes and proteins, the crystalloid, and one or a few large phytate crystals, the globoids. In seeds of the family Brassicaceae, the PSVs lack visible crystalloids and have many small globoids dispersed throughout. We biochemically fractionated PSVs from Brassica napus and defined a crystalloid-like fraction that contained integral membrane protein markers found in crystalloids of other plants. Protein analyses identified a previously undescribed family of proteins, the Brassicaceae PSV-embedded proteins (BPEPs), associated with 'crystalloid' and globoid fractions. The defining characteristics of the BPEPs are an N-terminal signal peptide and tandem MATH domains, which may mediate protein-protein interactions. Database analyses indicated that the BPEPs are unique to Brassicaceae. Immunofluorescence studies using anti-BPEP antibodies and antibodies to other biochemical markers to label B. napus and Arabidopsis thaliana seed sections localized the BPEPs to structures within the PSVs, whose appearance was consistent with a diffuse network of internalized membranes and globoids. These results demonstrate that Brassicaceae PSVs contain internalized membranes, and raise the possibility that BPEPs modify these internal membrane structures to yield a PSV morphology different from that of tomato or tobacco.  相似文献   

7.

Background

Ubiquitous CCCH nucleic acid-binding motif is found in a wide-variety of organisms. CCCH genes are involved in plant developmental processes and biotic and abiotic stress responses. Brassica rapa is a vital economic crop and classical model plant of polyploidy evolution, but the functions of CCCH genes in B. rapa are unclear.

Results

In this study, 103 CCCH genes in B. rapa were identified. A comparative analysis of the chromosomal position, gene structure, domain organization and duplication event between B. rapa and Arabidopsis thaliana were performed. Results showed that CCCH genes could be divided into 18 subfamilies, and segmental duplication might mainly contribute to this family expansion. C-X7/8-C-X5-C3-H was the most commonly found motif, but some novel CCCH motifs were also found, along with some loses of typical CCCH motifs widespread in other plant species. The multifarious gene structures and domain organizations implicated functional diversity of CCCH genes in B. rapa. Evidence also suggested functional redundancy in at least one subfamily due to high conservation between members. Finally, the expression profiles of subfamily-IX genes indicated that they are likely involved in various stress responses.

Conclusion

This study provides the first genome-wide characterization of the CCCH genes in B. rapa. The results suggest that B. rapa CCCH genes are likely functionally divergent, but mostly involved in plant development and stress response. These results are expected to facilitate future functional characterization of this potential RNA-binding protein family in Brassica crops.
  相似文献   

8.
9.
10.
The extreme resistance to Turnip mosaic virus observed in the Chinese cabbage (Brassica rapa) line, BP8407, is monogenic and recessive. Bulked segregant analysis was carried out to identify simple sequence repeat and Indel markers linked to this recessive resistance gene, termed recessive Turnip mosaic virus resistance 02 (retr02). Mapping of PCR-specific Indel markers on 239 individuals of a BP8407 × Ji Zao Chun F2 population, located this resistance gene to a 0.9-cM interval between two Indel markers (BrID10694 and BrID101309) and in scaffold000060 or scaffold000104 on chromosome A04 of the B. rapa genome. Eleven eukaryotic initiation factor 4E (eIF4E) and 14 eukaryotic initiation factor 4G (eIF4G) genes are predicted in the B. rapa genome. A candidate gene, Bra035393 on scaffold000104, was predicted within the mapped resistance locus. The gene encodes the eIF(iso)4E protein. Bra035393 was sequenced in BP8407 and Ji Zao Chun. A polymorphism (A/G) was found in exon 3 between BP8407 and Ji Zao Chun. This gene was analysed in four resistant and three susceptible lines. A correlation was observed between the amino acid substitution (Gly/Asp) in the eIF(iso)4E protein and resistance/susceptibility. eIF(iso)4E has been shown previously to interact with the TuMV genome-linked protein, VPg.  相似文献   

11.

Background

Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana.

Results

Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species.

Conclusion

This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-3) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background

Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa.

Results

We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway.

Conclusions

This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users.  相似文献   

13.
CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. CD2AP interacts, as an adaptor protein, with different natural targets, such as CD2, nefrin, c-Cbl and podocin. These proteins are believed to interact to one of the three SH3 domains that are positioned in the N-terminal region of CD2AP. To understand the network of interactions between the natural targets and the three SH3 domains (SH3-A, B and C), we have started to determine the structures of the individual SH3 domains. Here we present the high-resolution structure of the SH3-C domain derived from NMR data. Full backbone and side-chain assignments were obtained from triple-resonance spectra. The structure was determined from distance restraints derived from high-resolution 600 and 800 MHz NOESY spectra, together with phi and psi torsion angle restraints based on the analysis of 1HN, 15N, 1Hα, 13Cα, 13CO and 13Cβ chemical shifts. Structures were calculated using CYANA and refined in water using RECOORD. The three-dimensional structure of CD2AP SH3-C contains all the features that are typically found in other SH3 domains, including the general binding site for the recognition of polyproline sequences.  相似文献   

14.
Cross-compatible relatives of crop species contribute to the uncertainty regarding the potential risk of transgene escape from genetically modified varieties. The most successful crossing partner of oilseed rape (Brassica napus L.) is diploid Brassica rapa L. Variation of ploidy level among B. rapa cultivars has, until recently, been neglected in the context of gene flow and hybridisation with oilseed rape. We estimated the extent of hybridisation between autotetraploid B. rapa varieties (female) and B. napus (pollen donor) under experimental field conditions. Morphology, variation of relative DNA amount, and microsatellite markers were used to distinguish between intraspecific offspring of tetraploid B. rapa and interspecific hybrids with B. napus. Of 517 seed progenies of tetraploid B. rapa, 45 juvenile plants showed species specific morphological traits of oilseed rape. The detection of putative hybrids based on variation in relative DNA amounts was problematic due to the occurrence of aneuploidy. In total, 84 offspring showed relative DNA amounts deviating from tetraploid B. rapa, four of which were hexaploids. Of the 205 offspring analysed at three microsatellite loci, 67 had oilseed rape alleles. Based on molecular evidence a minimum hybridisation rate of 13.0% was estimated. A few mother plants accounted for the majority of hybrids. The mean pollen viability of hybrids between B. napus and tetraploid B. rapa (80.6%) was high in comparison with mean pollen viability of triploid hybrids between B. napus and diploid B. rapa. Therefore, the occurrence of tetraploid B. rapa should be taken into consideration when estimating the likelihood of gene flow from oilseed rape to close relatives at the landscape level. Tetraploid B. rapa is a common component of several seed mixtures and establishes feral populations in northwest Germany. Assuming a similar abundance of diploid and tetraploid B. rapa, gene flow from B. napus to tetraploid may be more likely than gene flow to diploid B. rapa.  相似文献   

15.
There are 13 Dictyostelium Src homology 2 (SH2) domain proteins, almost 10-fold fewer than in mammals, and only three are functionally unassigned. One of these, LrrB, contains a novel combination of protein interaction domains: an SH2 domain and a leucine-rich repeat domain. Growth and early development appear normal in the mutant, but expression profiling reveals that three genes active at these stages are greatly underexpressed: the ttdA metallohydrolase, the abcG10 small molecule transporter, and the cinB esterase. In contrast, the multigene family encoding the lectin discoidin 1 is overexpressed in the disruptant strain. LrrB binds to 14-3-3 protein, and the level of binding is highest during growth and decreases during early development. Comparative tandem affinity purification tagging shows that LrrB also interacts, via its SH2 domain and in a tyrosine phosphorylation-dependent manner, with two novel proteins: CldA and CldB. Both of these proteins contain a Clu domain, a >200-amino acid sequence present within highly conserved eukaryotic proteins required for correct mitochondrial dispersal. A functional interaction of LrrB with CldA is supported by the fact that a cldA disruptant mutant also underexpresses ttdA, abcG10, and cinB. Significantly, CldA is itself one of the three functionally unassigned SH2 domain proteins. Thus, just as in metazoa, but on a vastly reduced numerical scale, an interacting network of SH2 domain proteins regulates specific Dictyostelium gene expression.  相似文献   

16.
Databases of multiple sequence alignments are a valuable aid to protein sequence classification and analysis. One of the main challenges when constructing such a database is to simultaneously satisfy the conflicting demands of completeness on the one hand and quality of alignment and domain definitions on the other. The latter properties are best dealt with by manual approaches, whereas completeness in practice is only amenable to automatic methods. Herein we present a database based on hidden Markov model profiles (HMMs), which combines high quality and completeness. Our database, Pfam, consists of parts A and B. Pfam-A is curated and contains well-characterized protein domain families with high quality alignments, which are maintained by using manually checked seed alignments and HMMs to find and align all members. Pfam-B contains sequence families that were generated automatically by applying the Domainer algorithm to cluster and align the remaining protein sequences after removal of Pfam-A domains. By using Pfam, a large number of previously unannotated proteins from the Caenorhabditis elegans genome project were classified. We have also identified many novel family memberships in known proteins, including new kazal, Fibronectin type III, and response regulator receiver domains. Pfam-A families have permanent accession numbers and form a library of HMMs available for searching and automatic annotation of new protein sequences. Proteins: 28:405–420, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Superdomain is uniquely defined in this work as a conserved combination of different globular domains in different proteins. The amino acid sequences of 25 structurally and functionally diverse proteins from fungi, plants, and animals have been analyzed in a test of the superdomain hypothesis. Each of the proteins contains a protein tyrosine phosphatase (PTP) domain followed by a C2 domain. Four novel conserved sequence motifs have been identified, one in the PTP domain and three in the C2 domain. All contribute to the PTP-C2 domain interface in PTEN, a tumor suppressor, and all are more conserved than the PTP signature motif, HCX3(K/R)XR, in the 25 sequences. We show that PTP-C2 was formed prior to the fungi, plant, and animal kingdom divergence. A superdomain as defined here does not fit the usual protein structure classification system. The demonstrated existence of one superdomain suggests the existence of others.  相似文献   

18.
The baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) possesses two genes, iap1 and iap2, which encode inhibitor of apoptosis (IAP) proteins. We previously showed that although both genes are dispensable for viral propagation, iap2 is required for efficient viral propagation in cultured cells. BmNPV IAP2 contains three putative functional domains: a baculovirus IAP repeat (BIR), a BIR-like (BIRL) domain, and a RING finger domain. To identify the domain affecting viral growth, we generated a series of BmNPV bacmids expressing iap2 derivatives lacking one or two domains, or possessing a single amino acid substitution to abolish IAP2 ubiquitin ligase activity. We examined their properties in both cultured cells and B. mori larvae. We found that either the BIR or BIRL domain of IAP2 plays an important role in BmNPV infection, and that the RING finger domain, which is required for ubiquitin ligase activity, does not greatly contribute to BmNPV propagation. This is the first study to identify functional domains of the baculovirus IAP2 protein.  相似文献   

19.
A significant proportion of proteins comprise multiple domains. Domain–domain docking is a tool that predicts multi-domain protein structures when individual domain structures can be accurately predicted but when domain orientations cannot be predicted accurately. GalaxyDomDock predicts an ensemble of domain orientations from given domain structures by docking. Such information would also be beneficial in elucidating the functions of proteins that have multiple states with different domain orientations. GalaxyDomDock is an ab initio domain–domain docking method based on GalaxyTongDock, a previously developed protein–protein docking method. Infeasible domain orientations for the given linker are effectively screened out from the docked conformations by a geometric filter, using the Dijkstra algorithm. In addition, domain linker conformations are predicted by adopting a loop sampling method FALC. The proposed GalaxyDomDock outperformed existing ab initio domain–domain docking methods, such as AIDA and Rosetta, in performance tests on the Rosetta benchmark set of two-domain proteins. GalaxyDomDock also performed better than or comparable to AIDA on the AIDA benchmark set of two-domain proteins and two-domain proteins containing discontinuous domains, including the benchmark set in which each domain of the set was modeled by the recent version of AlphaFold. The GalaxyDomDock web server is freely available as a part of GalaxyWEB at http://galaxy.seoklab.org/domdock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号