首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
International Journal of Peptide Research and Therapeutics - Shigella spp. causes severe diarrhea and dysenteric disease, which known as shigellosis. Until now, no licensed vaccine is available for...  相似文献   

2.
International Journal of Peptide Research and Therapeutics - Helicobacter pylori (H. pylori) is a gram-negative spiral bacterium that caused infections in half of the world’s population and...  相似文献   

3.
International Journal of Peptide Research and Therapeutics - Acinetobacter baumannii is one of the most successful pathogens causing nosocomial infections and has significantly multidrug-resistant....  相似文献   

4.

Onchocerciasis, caused by Onchocerca volvulus, affects more than 37 million people worldwide. Despite the progress achieved with mass drug distribution, suitable vaccines against onchocerciasis are needed to effectively eliminate the infection. The O. volvulus cysteine protease inhibitor (onchocystatin) is an immuno-dominant antigen detected in O. volvulus infections, capable of inducing protective immunity. Here, we explore the onchocystatin for a multi-epitope subunit vaccine candidate targeted against onchocerciasis. A multi-epitope vaccine candidate composed of RS-09 as adjuvant, a CD8+ T cell peptide, a CD4+ T cell peptide and a B cell peptide concatenated with suitable linkers was computationally constructed. Immune simulation of the vaccine response predicted several aspects of antibody-dependent and cellular-mediated immunity with accompanied B cell and helper T cell immune memory development. The levels of lFN-γ and IL-2 were also predicted to be elevated. Collectively, our results suggest that the multi-epitope vaccine construct has the potential to mimic the natural immunity targeted against onchocerciasis and other related filarial infections, and should be considered for further experimental validations.

  相似文献   

5.
International Journal of Peptide Research and Therapeutics - Blackleg is an infectious disease of animals that is commonly caused by Clostridium chauvoei and characterized by localized muscle...  相似文献   

6.
International Journal of Peptide Research and Therapeutics - The COVID-19 disease is caused by SARS-CoV-2 and spreading rapidly worldwide with extremely high infection rate. Since effective and...  相似文献   

7.
International Journal of Peptide Research and Therapeutics - Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) has caused infection in different parts of the...  相似文献   

8.
9.
International Journal of Peptide Research and Therapeutics - Influenza A viruses are among the most studied viruses, however no effective prevention against influenza infection has been developed....  相似文献   

10.
International Journal of Peptide Research and Therapeutics - Lassa virus (LASV) is responsible for a type of acute viral haemorrhagic fever referred to as Lassa fever. Lack of adequate treatment...  相似文献   

11.
12.
The microscopic study of the dermal smears of 62 cases of cutaneous leishmaniose, 27 infected by Leishmania (L.) infantum and 35 by L. major, showed that the amastigotes of L. infantum are meaningfully smaller (p < 0.001). This criteria is a simple pary alternative to distinguish these 2 species which have completely different epidemiology, recovery delay and prophylactic dispositions.  相似文献   

13.
目的 构建含有靶向乙肝表面抗原(HBsAg)基因的siRNA、乙肝复合多表位抗原基因和hIL-12共质粒表达的新型DNA疫苗,并在HepG2细胞中检测siRNA的效果以及各基因的表达。方法 设计并合成复合多表位HBV抗原基因,将其与增强型绿色荧光蛋白(EGFP)基因融合克隆进真核表达载体pVAX1的多克隆位点中,同时将带CMV启动子的完整hIL-12表达单元克隆进载体的BspH I位点之间,再设计并合成乙肝siRNA表达单元,将其克隆进载体的Mlu I位点之间,得到真核三元共表达重组质粒pVAX1-siHB-HB-EGFP-hIL12。以该重组质粒瞬时转染人肝癌细胞系HepG2,通过EGFP的荧光标记观察多表位抗原的表达,以ELISA测定培养细胞上清中hIL-12的表达,以rtPCR检测siRNA对HBsAg基因的沉默效果。结果 经酶切鉴定和测序证实共表达siRNA、hIL-12的HBV 多表位DNA疫苗构建成功。转染细胞中检测到绿色荧光,证实抗原表达;转染后48 h hIL-12的检出量为1 289 pg/mL细胞上清,72 h检出量为1 712 pg/mL细胞上清;转染后HBsAg表达量明显降低,证实siRNA效果良好。结论 成功构建乙肝复合多表位抗原基因与siRNA、hIL-12共质粒表达的DNA疫苗,并能在真核细胞中有效表达抗原与hIL-12基因,而且siRNA对HBsAg显示出明显的沉默效果。我们的工作为进一步研究该复合型DNA疫苗抗HBV的治疗效果打下基础。  相似文献   

14.
The Protein Journal - Allergic diseases are a socially significant problem of global importance. The number of people suffering from pollen allergies has increased dramatically in recent decades....  相似文献   

15.
旨为推动新型冠状病毒(2019-nCoV)亚单位疫苗的开发并探索筛选适用于该疫苗的高效免疫增强剂,本试验分别诱导表达2019-nCoV- S和2019-nCoV- N两个蛋白,经纯化后测定目的蛋白含量,并分别加入不同浓度的松花粉多糖(PPPS)(200、400、800 mg/mL)作为佐剂制备基因工程亚单位疫苗,黄芪多糖佐剂作为对照。选取100只SPF级BALB/c小鼠随机分为10组,每种亚单位疫苗使用5组,免疫疫苗后检测各组小鼠免疫指标,探讨PPPS对2019-nCoV- S和2019-nCoV- N两种亚单位疫苗的免疫增强效果。结果显示,重组表达并纯化的目的蛋白分别在55.68 kD和45.64 kD处出现单一条带,经鉴定表达正确,蛋白质量浓度分别为1.12 mg/mL和0.66 mg/mL。用制作成的含佐剂亚单位疫苗免疫小鼠后发现400 mg/mL PPPS对两种疫苗的免疫效果均有显著的提升效果,并且效果优于黄芪多糖佐剂。综上所述,两种重组蛋白均能诱导较高的抗体水平,PPPS可以作为2019-nCoV亚单位疫苗的候选佐剂。  相似文献   

16.

Screening of HLA class II epitope-based peptides as potential vaccine candidates is one of the most rational approach for vaccine development against Hendra virus (HeV) infection, for which currently there is no successful vaccine in practice. In this study, screening of epitopes from HeV proteins viz matrix, glycoprotein, nucleocapsid, fusion, C protein, V protein, W protein and polymerase, followed by highest binding affinity & molecular dynamic simulation of selected T-cell epitopes with their corresponding HLA class II alleles has been done. The server ProPred facilitates the binding prediction of HLA class II allele specific epitopes from the antigenic protein sequences of HeV. PEPstrMOD server was used for PDB structure modeling of the screened epitopes and MODELLER was used for HLA alleles modeling. We docked the selected T-cell epitopes with their corresponding HLA allele structures using the AutoDock 4.2 tool. Further the selected docked complex structures were optimized by NAnoscale Molecular Dynamics program (NAMD) at 5 ps, with the CHARMM-22 force field parameter incorporated in Visual Molecular Dynamics (VMD 1.9.2) and complex structure stability was evaluated by calculating RMSD values. Epitopes IRIFVPATN (Nucleocapsid), MRNLLSQSL (Nucleocapsid), VRRAGKYYS (Matrix) and VRLKCLLCG (Fusion) proteins have shown considerable binding with DRB1*0806, DRB1*1304, DRB1*0701 and DRB1*0301 HLA class II allele respectively. Toxicity, antigenicity and population coverage of epitopes IRIFVPATN, MRNLLSQSL, VRRAGKYYS and VRLKCLLCG were analyzed by Toxin Pred, Vexijen and IEDB tool, respectively. The potential T-cell epitopes can be utilized in designing comprehensive epitope-based vaccines and diagnostic kits against Hendra virus after further in-vivo studies.

  相似文献   

17.
We have developed efficient methods for epitope identification and vaccine design. Our process for epitope selection based on the combined use of motif analyses, binding assays and immunogenicity evaluations is described. We also describe how the projected population coverage and vaccine design can be optimized. Finally, it is discussed how vaccine potency is evaluated by immunogenicity and antigenicity assays.  相似文献   

18.
19.
Leishmaniases have a high prevalence in tropical countries. In order to improve existing diagnostic systems based on total Leishmania proteins, and to identify antigen candidates for vaccine development, an intensive search for the identification of antigens was performed using molecular biology techniques. In this study, the immune response to three L. infantum recombinant antigens was evaluated. Upon stimulation with KMP11, mononuclear cells from leishmaniasis patients produced high levels of IL-10, while a predominant IFN-gamma production could be observed in cultures stimulated with H2A and soluble Leishmania antigen. All the recombinant antigens induced very little IL-5. KMP11 decreased IFN-gamma production by 48% in cultures of peripheral blood mononuclear cells from cutaneous leishmaniasis patients who had been stimulated with soluble Leishmania antigen. Furthermore, antibodies to KMP11 were detected in the sera from all patients with visceral leishmaniasis and in the majority of the sera from patients with cutaneous leishmaniasis or individuals with asymptomatic L. chagasi infection. Thus, KMP11 is recognized by cells and sera of patients with different clinical forms of leishmaniasis, and KMP11, through IL-10 production, proved to be a potent antigen in modulating type 1 immune response.  相似文献   

20.

Leishmaniasis is caused by an obligate intracellular protozoan parasite. The clinical forms of leishmaniasis differ from cutaneous leishmaniasis, mucocutaneous leishmaniasis and visceral leishmaniasis (VL) which depend on the parasite species and the host’s immune responses. There are significant challenges to the available anti-leishmanial drug therapy, particularly in severe forms of disease, and the rise of drug resistance has made it more difficult. Currently, no licensed vaccines have been introduced to the market for the control and elimination of VL. A potential target for use in candidate vaccines against leishmaniasis has been shown to be leishmania Kinetoplastid membrane protein-11 (KMP-11) antigen. In this study, we chose KMP-11 antigen as target antigen in our vaccine construct. In addition, B-type flagellin (fliC) was used as an adjuvant for enhancing vaccine immunogenicity. The GSGSGSGSGSG linker was applied to link the KMP-11 antigen and fliC (KMP-11-fliC) to construct our fusion protein. Bioinformatics approaches such as; 3D homology modeling, CTL, B-cell, MHC class I and II epitopes prediction, allergenicity, antigenicity evaluations, molecular docking, fast simulations of flexibility of docked complex and in silico cloning were employed to analysis and evaluation of various properties of the designed fusion construct. Computational results showed that our engineered structure has the potential for proper stimulation of cellular and humoral immune responses against VL. Consequently, it could be proposed as a candidate vaccine against VL according to these data and after verifying the efficacy of the candidate vaccine through in vivo and in vitro immunological tests.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号