首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cellular signalling》2014,26(12):2865-2878
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039.  相似文献   

2.
In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.  相似文献   

3.
Autophagy is a catabolic process used by eukaryotic cells for the degradation and recycling of cytosolic proteins and excess or defective organelles. In yeast, autophagy is primarily a response to nutrient limitation, whereas in higher eukaryotes it also plays a role in developmental processes. Due to its essentially unlimited degradative capacity, it is critical that regulatory mechanisms are in place to modulate the timing and magnitude of the autophagic response. One set of proteins that seems to function in this regard includes a complex that contains the Atg1 kinase. Aside from Atg1, the proteins in this complex participate primarily in either nonspecific autophagy or specific types of autophagy, including the cytoplasm to vacuole targeting pathway, which operates under vegetative growth conditions, and peroxisome degradation. Accordingly, these proteins are prime candidates for factors that regulate the conversion between these pathways, including the change in size of the sequestering vesicle, the most obvious morphological difference. The atg17delta mutant forms a reduced number of small autophagosomes. As a result, it is defective in peroxisome degradation and is partially defective for autophagy. Atg17 interacts with both Atg1 and Atg13, via two coiled-coil domains, and these interactions facilitate its inclusion in the Atg1 complex.  相似文献   

4.
《Autophagy》2013,9(2):263-265
Studies of the budding yeast Saccharomyces cerevisiae have provided many of the most important insights into the mechanisms of autophagy, which are common to all eukaryotes. However, investigation of yeast self-destruction pathways, including autophagy and programmed cell death, has been almost exclusively restricted to cells undergoing vegetative growth, leaving very little exploration of their functions during developmental transitions in the yeast life cycle. We have recently discovered that whole nuclei are subject to programmed destruction during yeast gametogenesis. Programmed nuclear destruction (PND) possesses characteristics of apoptosis in the form of DNA cleavage by endonuclease G, and involves bulk protein turnover through an unusual autophagic pathway involving lysis of the vacuole rather than delivery of components to it through macroautophagy. We thus illuminate an example of developmentally programmed cellular “self-eating” in yeast, which is associated with the rupture of a lytic organelle, reminiscent of programmed cell death mechanisms in plants and animals.  相似文献   

5.
Autophagy: molecular machinery for self-eating   总被引:3,自引:0,他引:3  
Autophagy is a highly conserved process in eukaryotes in which the cytoplasm, including excess or aberrant organelles, is sequestered into double-membrane vesicles and delivered to the degradative organelle, the lysosome/vacuole, for breakdown and eventual recycling of the resulting macromolecules. This process has an important role in various biological events such as adaptation to changing environmental conditions, cellular remodeling during development and differentiation, and determination of lifespan. Auto-phagy is also involved in preventing certain types of disease, although it may contribute to some pathologies. Recent studies have identified many components that are required to drive this complicated cellular process. Auto-phagy-related genes were first identified in yeast, but homologs are found in all eukaryotes. Analyses in a range of model systems have provided huge advances toward understanding the molecular basis of autophagy. Here we review our current knowledge on the machinery and molecular mechanism of autophagy.  相似文献   

6.
Many proteins involved in autophagy have been identified in the yeast Saccharomyces cerevisiae. For example, Atg3 and Atg10 are two E2 enzymes that facilitate the conjugation of the ubiquitin-like proteins (Ubls) Atg8 and Atg12, respectively. Here, we describe the identification and characterization of the predicted Atg10 homolog (SpAtg10) of the evolutionarily distant Schizosaccharomyces pombe. Unexpectedly, SpAtg10 is not essential for autophagy. Instead, we find that SpAtg10 is essential for normal cell cycle progression, and for responses to various stress conditions that perturb the cell cycle, independently of Atg12 conjugation. Taken together, our data indicate that autophagic Ubl conjugation pathways differ between eukaryotes and, furthermore, that enzymes such as Atg10 may have additional functions in controlling key cellular processes such as cell cycle progression. Atg10-related proteins are found from yeast to humans, and, thus, this study has implications for understanding the functions of this protein family in Ubl conjugation in eukaryotes.  相似文献   

7.
Autophagy and Human Disease   总被引:1,自引:0,他引:1  
As a conserved cellular degradative pathway in eukaryotes, autophagy relieves cells from various types of stress. There are different forms of autophagy, and the ongoing studies of the molecular mechanisms and cellular functions of these processes are unraveling their significant roles in human health. Currently, the best-studied of these pathways is macroautophagy, which is linked to a range of human disease. For example, as part of the host immune defense mechanism, macroautophagy is activated to eliminate invasive pathogenic bacteria; however, in some cases bacteria subvert this process for their own replication. Autophagy also contributes to endogenous major histocompatibility complex class II antigen presentation, reflecting its role in adaptive immunity. In certain neurodegenerative diseases, which are associated with aggregation-prone proteins, macroautophagy plays a protective role in preventing or reducing cytotoxicity by clearance of the toxic proteins; however, the autophagy-dependent processing of some components correlates with the pathogenesis of certain myopathies. Finally, autophagy acts as a mechanism for tumor suppression, although some cancer cells use it as a cytoprotective mechanism. Thus, a fundamental paradox of autophagy is that it can act to promote both cell survival and cell death, depending on the specific conditions.  相似文献   

8.
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate.Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.  相似文献   

9.
Macroautophagy/autophagy is a highly conserved process for degrading cytoplasmic contents, determines cell survival or death, and regulates the cellular homeostasis. Besides ATG proteins, numerous regulators together with various post-translational modifications (PTMs) are also involved in autophagy. In this work, we collected 4,237 experimentally identified proteins regulated in autophagy and cell death pathways from the literature. Then we computationally identified potential orthologs of known proteins, and developed a comprehensive database of The Autophagy, Necrosis, ApopTosis OrchestratorS (THANATOS, http://thanatos.biocuckoo.org), containing 191,543 proteins potentially associated with autophagy and cell death pathways in 164 eukaryotes. We performed an evolutionary analysis of ATG genes, and observed that ATGs required for the autophagosome formation are highly conserved across eukaryotes. Further analyses revealed that known cancer genes and drug targets were overrepresented in human autophagy proteins, which were significantly associated in a number of signaling pathways and human diseases. By reconstructing a human kinase-substrate phosphorylation network for ATG proteins, our results confirmed that phosphorylation play a critical role in regulating autophagy. In total, we mapped 65,015 known sites of 11 types of PTMs to collected proteins, and revealed that all types of PTM substrates were enriched in human autophagy. In addition, we observed multiple types of PTM regulators such as protein kinases and ubiquitin E3 ligases or adaptors were significantly associated with human autophagy, and again the results emphasized the importance of PTM regulations in autophagy. We anticipated THANATOS can be a useful resource for further studies.  相似文献   

10.
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.  相似文献   

11.
Stephan JS  Herman PK 《Autophagy》2006,2(2):146-148
The induction of autophagy appears to be tightly controlled in all eukaryotic cells. This highly conserved, degradative process is induced by a variety of signals, including nutrient deprivation, and is generally thought to be incompatible with rapid cell growth. Recent work in the budding yeast, Saccharomyces cerevisiae, has suggested that the Atg1 protein kinase is at the center of this control. Atg1, and its associated proteins, appear to be directly targeted by multiple signaling pathways important for the control of both autophagy and cell growth. These pathways involve the small GTP-binding Ras proteins, the Tor protein kinases and the AMP-activated protein kinase, Snf1, respectively. A key question that remains is whether this regulatory paradigm has been evolutionarily conserved. In other words, is Atg1 the primary target of those signaling pathways responsible for coordinating growth with environmental influences in other eukaryotes? Here, we suggest that Atg1 is very likely to fulfill this role but that a truly definitive answer will require that we develop a better understanding of this protein kinase and its targets in all eukaryotes.  相似文献   

12.
Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances, and identification of components and features of autophagy unique to higher eukaryotes also remains a challenge. In this review we describe recent insights into the roles and control mechanisms of autophagy gained from in vivo studies in Drosophila. We focus on potential roles of autophagy in controlling cell growth and death, and describe how the regulation of autophagy has evolved to include metazoan-specific signaling pathways. We discuss genetic screening approaches that are being used to identify novel regulators and effectors of autophagy, and speculate about areas of research in this system likely to bear fruit in future studies.  相似文献   

13.
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic constituents. The central structures of this pathway are newly formed double-membrane vesicles (autophagosomes) that deliver excess or damaged cell components into the vacuole or lysosome for proteolytic degradation and monomer recycling. Cellular remodeling by autophagy allows organisms to survive extensive phases of nutrient starvation and exposure to abiotic and biotic stress. Autophagy was initially studied by electron microscopy in diverse organisms, followed by molecular and genetic analyses first in yeast and subsequently in mammals and plants. Experimental data demonstrate that the basic principles, mechanisms, and components characterized in yeast are conserved in mammals and plants to a large extent. However, distinct autophagy pathways appear to differ between kingdoms. Even though direct information remains scarce particularly for plants, the picture is emerging that the signal transduction cascades triggering autophagy and the mechanisms of organelle turnover evolved further in higher eukaryotes for optimization of nutrient recycling. Here, we summarize new research data on nitrogen starvation-induced signal transduction and organelle autophagy and integrate this knowledge into plant physiology.  相似文献   

14.
Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance.  相似文献   

15.
《Autophagy》2013,9(5):557-562
Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances, and identification of components and features of autophagy unique to higher eukaryotes also remains a challenge. In this review we describe recent insights into the roles and control mechanisms of autophagy gained from in vivo studies in Drosophila. We focus on potential roles of autophagy in controlling cell growth and death, and describe how the regulation of autophagy has evolved to include metazoan-specific signaling pathways. We discuss genetic screening approaches that are being used to identify novel regulators and effectors of autophagy, and speculate about areas of research in this system likely to bear fruit in future studies.  相似文献   

16.
《Autophagy》2013,9(2):146-148
The induction of autophagy appears to be tightly controlled in all eukaryotic cells. This highly conserved, degradative process is induced by a variety of signals, including nutrient deprivation, and is generally thought to be refractory to cell growth. Recent work in the budding yeast, Saccharomyces cerevisiae, has suggested that the Atg1 protein kinase is at the center of this control. Atg1, and its associated proteins, appear to be directly targeted by multiple signaling pathways important for the control of both autophagy and cell growth. These pathways involve the small GTP-binding Ras proteins, the Tor protein kinases and the AMP-activated protein kinase, Snf1, respectively. A key question that remains is whether this regulatory paradigm has been evolutionarily conserved. In other words, is Atg1 the primary target of those signalingpathways responsible for coordinating growth with environmental influences in other eukaryotes? Here, we suggest that Atg1 is very likely to fulfill this role but that a truly definitive answer will require that we develop a better understanding of this protein kinase and its targets in all eukaryotes.  相似文献   

17.
18.
Yu-Yun Chang 《FEBS letters》2010,584(7):1342-1349
Drosophila has been shown to be a powerful model to study autophagy, whose regulation involves a core machinery consisting of Atg proteins and upstream signaling regulators similar to those in yeast and mammals. The conserved role in degrading proteins and organelles gives autophagy an important function in coordinating several cellular processes as well as in a number of pathological conditions. This review summarizes key studies in Drosophila autophagy research and discusses potential questions that may lead to better understanding of the roles and regulation of autophagy in higher eukaryotes.  相似文献   

19.
Autophagy is a lysosome‐mediated degradation pathway used by eukaryotes to recycle cytosolic components in both basal and stress conditions. Several genes have been described as regulators of autophagy, many of them being evolutionarily conserved from yeast to mammals. The study of autophagy‐defective model systems has made it possible to highlight the importance of correctly functioning autophagic machinery in the development of invertebrates as, for example, during the complex events of fly and worm metamorphosis. In vertebrates, on the other hand, autophagy defects can be lethal for the animal if the mutated gene is involved in the early stages of development, or can lead to severe phenotypes if the mutation affects later stages. However, in both lower and higher eukaryotes, autophagy seems to be crucial during embryogenesis by acting in tissue remodeling in parallel with apoptosis. An increase of autophagic cells is, in fact, observed in the embryonic stages characterized by massive cell elimination. Moreover, autophagic processes probably protect cells during metabolic stress and nutrient paucity that occur during tissue remodeling. In light of such evidence, it can be concluded that there is a close interplay between autophagy and the processes of cell death, proliferation and differentiation that determine the development of higher eukaryotes.  相似文献   

20.
Autophagy controls cellular catabolism in diverse eukaryotes and modulates programmed cell death in plants and animals. While studies of the unicellular yeast Saccharomyces cerevisiae have provided fundamental insights into the mechanisms of autophagy, the roles of cell death pathways in yeast are less well understood. Here, we describe widespread developmentally programmed nuclear destruction (PND) events that occur during yeast gametogenesis. PND is executed through apoptotic-like DNA fragmentation in coordination with an unusual form of autophagy that is most similar to mammalian lysosomal membrane permeabilization and mega-autophagy, a form of plant autophagic cell death. Undomesticated strains execute gametogenic PND broadly in maturing colonies to the apparent benefit of sibling cells, confirming its prominence during the yeast life cycle. Our results reveal that diverse cell-death-related processes converge during gametogenesis in a microbe distantly related to plants or animals, highlighting gametogenesis as a process during which programmed cell death mechanisms may have evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号