首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fundamental issue in understanding human diversity is whether or not there are regular patterns and processes involved in cultural change. Theoretical and mathematical models of cultural evolution have been developed and are increasingly being used and assessed in empirical analyses. Here, we test the hypothesis that the rates of change of features of human socio-cultural organization are governed by general rules. One prediction of this hypothesis is that different cultural traits will tend to evolve at similar relative rates in different world regions, despite the unique historical backgrounds of groups inhabiting these regions. We used phylogenetic comparative methods and systematic cross-cultural data to assess how different socio-cultural traits changed in (i) island southeast Asia and the Pacific, and (ii) sub-Saharan Africa. The relative rates of change in these two regions are significantly correlated. Furthermore, cultural traits that are more directly related to external environmental conditions evolve more slowly than traits related to social structures. This is consistent with the idea that a form of purifying selection is acting with greater strength on these more environmentally linked traits. These results suggest that despite contingent historical events and the role of humans as active agents in the historical process, culture does indeed evolve in ways that can be predicted from general principles  相似文献   

2.
Traditional investigations of the evolution of human social and political institutions trace their ancestry back to nineteenth century social scientists such as Herbert Spencer, and have concentrated on the increase in socio-political complexity over time. More recent studies of cultural evolution have been explicitly informed by Darwinian evolutionary theory and focus on the transmission of cultural traits between individuals. These two approaches to investigating cultural change are often seen as incompatible. However, we argue that many of the defining features and assumptions of 'Spencerian' cultural evolutionary theory represent testable hypotheses that can and should be tackled within a broader 'Darwinian' framework. In this paper we apply phylogenetic comparative techniques to data from Austronesian-speaking societies of Island South-East Asia and the Pacific to test hypotheses about the mode and tempo of human socio-political evolution. We find support for three ideas often associated with Spencerian cultural evolutionary theory: (i) political organization has evolved through a regular sequence of forms, (ii) increases in hierarchical political complexity have been more common than decreases, and (iii) political organization has co-evolved with the wider presence of hereditary social stratification.  相似文献   

3.
Human language is unique among the communication systems of the natural world: it is socially learned and, as a consequence of its recursively compositional structure, offers open-ended communicative potential. The structure of this communication system can be explained as a consequence of the evolution of the human biological capacity for language or the cultural evolution of language itself. We argue, supported by a formal model, that an explanatory account that involves some role for cultural evolution has profound implications for our understanding of the biological evolution of the language faculty: under a number of reasonable scenarios, cultural evolution can shield the language faculty from selection, such that strongly constraining language-specific learning biases are unlikely to evolve. We therefore argue that language is best seen as a consequence of cultural evolution in populations with a weak and/or domain-general language faculty.  相似文献   

4.
Genetic diversity is recognized as a fundamental component of biodiversity and its protection is incorporated in several conventions and policies. However, neither the concepts nor the methods for assessing conservation value of the spatial distribution of genetic diversity have been resolved. Comparative phylogeography can identify suites of species that have a common history of vicariance. In this study we explore the strengths and limitations of Faith's measure of 'Phylogenetic Diversity' (PD) as a method for predicting from multiple intraspecific phylogeographies the underlying feature diversity represented by combinations of areas. An advantage of the PD approach is that information on the spatial distribution of genetic diversity can be combined across species and expressed in a form that allows direct comparison with patterns of species distributions. It also seeks to estimate the same parameter, feature diversity, regardless of the level of biological organization. We extend the PD approach by using Venn diagrams to identify the components of PD, including those unique to or shared among areas and those which represent homoplasy on an area tree or which are shared across all areas. PD estimation should be complemented by analysis of these components and inspection of the contributing phylogeographies. We illustrate the application of the approach using mtDNA phylogeographies from vertebrates resident in the wet tropical rainforests of north-east Queensland and compare the results to biodiversity assessments based on the distribution of endemic vertebrate species. The genetic vs. species approaches produce different assessments of conservation value, perhaps reflecting differences in the temporal and spatial scale of the determining processes. The two approaches should be seen as complementary and, in this case, conservation planning should incorporate information on both dimensions of biodiversity.  相似文献   

5.
Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life‐history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life‐history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life‐history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life‐history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two‐step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life‐history strategies and a birds' environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration.  相似文献   

6.
The statistical estimation of phylogenies is always associated with uncertainty, and accommodating this uncertainty is an important component of modern phylogenetic comparative analysis. The birth–death polytomy resolver is a method of accounting for phylogenetic uncertainty that places missing (unsampled) taxa onto phylogenetic trees, using taxonomic information alone. Recent studies of birds and mammals have used this approach to generate pseudoposterior distributions of phylogenetic trees that are complete at the species level, even in the absence of genetic data for many species. Many researchers have used these distributions of phylogenies for downstream evolutionary analyses that involve inferences on phenotypic evolution, geography, and community assembly. I demonstrate that the use of phylogenies constructed in this fashion is inappropriate for many questions involving traits. Because species are placed on trees at random with respect to trait values, the birth–death polytomy resolver breaks down natural patterns of trait phylogenetic structure. Inferences based on these trees are predictably and often drastically biased in a direction that depends on the underlying (true) pattern of phylogenetic structure in traits. I illustrate the severity of the phenomenon for both continuous and discrete traits using examples from a global bird phylogeny.  相似文献   

7.
Long‐distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine‐scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs’ calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue.  相似文献   

8.
Allometric constraint is a product of natural selection and physical laws, particularly with respect to body size and traits constrained by properties thereof, such as metabolism, longevity, and vocal frequency. Allometric relationships are often conserved across lineages, indicating that physical constraints dictate scaling patterns in deep time, despite substantial genetic and ecological divergence among organisms. In particular, acoustic allometry (sound frequency ~ body size) is conserved across frogs, in defiance of massive variation in both body size and frequency. Here, we ask how many instances of allometric escape have occurred across the frog tree of life using a Bayesian framework that estimates the location, number, and magnitude of shifts in the adaptive landscape of acoustic allometry. Moreover, we test whether ecology in terms of calling site could affect these relationships. We find that calling site has a major influence on acoustic allometry. Despite this, we identify only four major instances of allometric escape, potentially deriving from ecomorphological adaptations to new signal modalities. In these instances of allometric escape, the optima and strength of the scaling relationship are different than expected for most other frog species, representing new adaptive regimes of body size ~ call frequency. Allometric constraints on frog calls are highly conserved and have rarely allowed escape, despite frequent invasions of new adaptive regimes and dramatic ecomorphological divergence. Our results highlight the rare instances in which natural and sexual selection combined can overcome physical constraints on sound production.  相似文献   

9.
Linguistic divergence occurs after speech communities divide, in a process similar to speciation among isolated biological populations. The resulting languages are hierarchically related, like genes or species. Phylogenetic methods developed in evolutionary biology can thus be used to infer language trees, with the caveat that 'borrowing' of linguistic elements between languages also occurs, to some degree. Maximum-parsimony trees for 75 Bantu and Bantoid African languages were constructed using 92 items of basic vocabulary. The level of character fit on the trees was high (consistency index was 0.65), indicating that a tree model fits Bantu language evolution well, at least for the basic vocabulary. The Bantu language tree reflects the spread of farming across this part of sub-Saharan Africa between ca. 3000 BC and AD 500. Modern Bantu subgroups, defined by clades on parsimony trees, mirror the earliest farming traditions both geographically and temporally. This suggests that the major subgroups of modern Bantu stem from the Neolithic and Early Iron Age, with little subsequent movement by speech communities.  相似文献   

10.
Human communication systems evolve culturally, but the evolutionary mechanisms that drive this evolution are not well understood. Against a baseline that communication variants spread in a population following neutral evolutionary dynamics (also known as drift models), we tested the role of two cultural selection models: coordination- and content-biased. We constructed a parametrized mixed probabilistic model of the spread of communicative variants in four 8-person laboratory micro-societies engaged in a simple communication game. We found that selectionist models, working in combination, explain the majority of the empirical data. The best-fitting parameter setting includes an egocentric bias and a content bias, suggesting that participants retained their own previously used communicative variants unless they encountered a superior (content-biased) variant, in which case it was adopted. This novel pattern of results suggests that (i) a theory of the cultural evolution of human communication systems must integrate selectionist models and (ii) human communication systems are functionally adaptive complex systems.  相似文献   

11.
Human societies maintain between-group variation despite mixing of people and ideas. In order for variation to remain, migrants or their children must preferentially adopt local norms, customs, and beliefs. Yet the details of how cultural variation is maintained, despite mixing, remain unknown. This article addresses this problem by using a simple model of the evolution of cultural learning to interpret the results of a study of cultural variation in a small region of East Africa. I argue that the manner in which migrants of two diverse regions adapt to local beliefs and behavior depends on the costs and accuracy of learning in each domain. Observational studies are never definitive tests of any hypothesis, but these results suggest that conclusions about the significance of cultural learning for understanding individual attitudes and behavior depend strongly upon the domain of investigation.  相似文献   

12.
Phylogenetic regression is frequently used in macroevolutionary studies, and its statistical properties have been thoroughly investigated. By contrast, phylogenetic ANOVA has received relatively less attention, and the conditions leading to incorrect statistical and biological inferences when comparing multivariate phenotypes among groups remain underexplored. Here, we propose a refined method of randomizing residuals in a permutation procedure (RRPP) for evaluating phenotypic differences among groups while conditioning the data on the phylogeny. We show that RRPP displays appropriate statistical properties for both phylogenetic ANOVA and regression models, and for univariate and multivariate datasets. For ANOVA, we find that RRPP exhibits higher statistical power than methods utilizing phylogenetic simulation. Additionally, we investigate how group dispersion across the phylogeny affects inferences, and reveal that highly aggregated groups generate strong and significant correlations with the phylogeny, which reduce statistical power and subsequently affect biological interpretations. We discuss the broader implications of this phylogenetic group aggregation, and its relation to challenges encountered with other comparative methods where one or a few transitions in discrete traits are observed on the phylogeny. Finally, we recommend that phylogenetic comparative studies of continuous trait data use RRPP for assessing the significance of indicator variables as sources of trait variation.  相似文献   

13.
Macroevolution, encompassing the deep-time patterns of the origins of modern biodiversity, has been discussed in many contexts. Non-Darwinian models such as macromutations have been proposed as a means of bridging seemingly large gaps in knowledge, or as a means to explain the origin of exquisitely adapted body plans. However, such gaps can be spanned by new fossil finds, and complex, integrated organisms can be shown to have evolved piecemeal. For example, the fossil record between dinosaurs and Archaeopteryx has now filled up with astonishing fossil intermediates that show how the unique plexus of avian adaptations emerged step by step over 60 Myr. New numerical approaches to morphometrics and phylogenetic comparative methods allow palaeontologists and biologists to work together on deep-time questions of evolution, to explore how diversity, morphology and function have changed through time. Patterns are more complex than sometimes expected, with frequent decoupling of species diversity and morphological diversity, pointing to the need for some new generalizations about the processes that lie behind such patterns.  相似文献   

14.
Abstract. In several carnivores a newly fertilized egg enters diapause instead of being directly implanted into the uterus, a phenomenon called delayed implantation. Several hypotheses have been forwarded to explain the utility of this prolonged gestation period, but all of these depend on several independent origins of the character. Here, we conduct a phylogenetic reconstruction of the evolution of delayed implantation in the Carnivora that reveals one basal origin, with additional transitions all having occurred within the Mustelidae. Hence, previous hypotheses relating to its evolution become untestable. Further analyses revealed that the presence or absence of delayed implantation is unrelated to the timing of mating season and birth season. Instead, mustelids with direct implantation are smaller than those with delayed implantation. We therefore suggest that delayed implantation has been selected against in small species due to the relatively higher fecundity costs of a prolonged gestation period.  相似文献   

15.
The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel‐tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel‐tooth‐digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel‐tooth‐digging rodents differ in craniodental morphology. The study showed that the crania of chisel‐tooth‐digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel‐tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel‐tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species’ evolutionary history and functional morphology.  相似文献   

16.
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow‐water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef‐dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine‐scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes.  相似文献   

17.
Extensive skeletal pneumaticity (air-filled bone) is a distinguishing feature of birds. The proportion of the skeleton that is pneumatized varies considerably among the >10,000 living species, with notable patterns including increases in larger bodied forms, and reductions in birds employing underwater pursuit diving as a foraging strategy. I assess the relationship between skeletal pneumaticity and body mass and foraging ecology, using a dataset of the diverse "waterbird" clade that encompasses a broad range of trait variation. Inferred changes in pneumaticity and body mass are congruent across different estimates of phylogeny, whereas pursuit diving has evolved independently between two and five times. Phylogenetic regressions detected positive relationships between body mass and pneumaticity, and negative relationships between pursuit diving and pneumaticity, whether independent variables are considered in isolation or jointly. Results are generally consistent across different estimates of topology and branch lengths. "Predictive" analyses reveal that several pursuit divers (loons, penguins, cormorants, darters) are significantly apneumatic compared to their relatives, and provide an example of how phylogenetic information can increase the statistical power to detect taxa that depart from established trait correlations. These findings provide the strongest quantitative comparative support yet for classical hypotheses regarding the evolution of avian skeletal pneumaticity.  相似文献   

18.
Acoustic signals show immense variation among passerines, and several hypotheses have been proposed to explain this diversity. In this study, we tested, for the first time, the relationships of song structure to phylogeny, habitat type, and morphology in the vireos and allies (Vireonidae). Every measure of song structure considered in this study had moderate and significant phylogenetic signal. Furthermore, two song-constraining morphological traits, bill shape and body mass, also exhibited significant phylogenetic signal. Song length showed the largest within-clade similarity; longer songs were highly conserved in part of the greenlet (Hylophilus) clade, whereas shorter songs characterized the remaining seven genera. We found no differences in song structure among vireonids living in different habitat types. However, vireonids with shorter, stouter bills and larger bodies sang songs with lower minimum and maximum peak frequency, compared with species with longer, thinner bills and smaller bodies. We conclude that Vireonidae song evolution is driven partially by phylogenetically conserved morphological traits. Our findings support the phylogenetic signal and morphological constraints hypotheses explaining structural diversity in avian acoustic signals.  相似文献   

19.
20.
The effects of chromosome rearrangement on genome size are poorly understood. While chromosome duplications and deletions have predictable effects on genome size, chromosome fusion, fission, and translocation do not. In this study, we investigate genome size and chromosome number evolution in 87 species of Carex, one of the most species-rich genera of flowering plants and one that has undergone an exceptionally high rate of chromosome rearrangement. Using phylogenetic generalized least-squares regression, we find that the correlation between chromosome number and genome size in the genus grades from flat or weakly positive at fine phylogenetic scales to weakly negative at deeper phylogenetic scales. The rate of chromosome evolution exhibits a significant increase within a species-rich clade that arose approximately 5 million years ago. Genome size evolution, however, demonstrates a nearly constant rate across the entire tree. We hypothesize that this decoupling of genome size from chromosome number helps explain the high lability of chromosome number in the genus, as it reduces indirect selection on chromosome number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号