首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An understanding of the evolution of modern terrestrial ecosystems requires an understanding of the dynamics associated with angiosperm evolution, including the timing of their origin and diversification into their extraordinary present-day diversity. Molecular estimates of angiosperm age have varied widely, and many substantially predate the Early Cretaceous fossil appearance of the group. In this study, the effect of different genes, codon positions, and chronological constraints on node ages are examined on divergence time estimates across seed plants, with a special focus on angiosperms. Penalized likelihood was used to estimate divergence times on a phylogenetic hypothesis for seed plants derived from Bayesian analysis, with branch lengths estimated with maximum likelihood. The plastid genes atpB, psaA, psbB, and rbcL were used individually and in combination, using first and second, third, and the three codon positions, including and excluding age constraints on 20 nodes derived from a critical examination of the land-plant fossil record. The optimal level of rate smoothing according to each unconstrained and constrained dataset was obtained with penalized likelihood. Tests for a molecular clock revealed significantly unclocklike rates in all datasets. Addition of fossil constraints resulted in even greater departures from constancy. Consistently with significant deviations from a clock, estimated optimal smoothing values were low, but a strict correlation between rate heterogeneity and optimal smoothing value was not found. Age estimates for nodes across the phylogeny varied, sometimes substantially, with gene and codon position. Nevertheless, estimates based on the four concatenated genes are very similar to the mean of the four individual gene estimates. For any given node, unconstrained age estimates are more variable than constrained estimates and are frequently younger than well-substantiated fossil members of the clade. Constrained estimates of ages of clades are older than unconstrained estimates and oldest fossil representatives, sometimes substantially so. Angiosperm age estimates decreased as rate smoothing increased. Whereas the range of unconstrained angiosperm age estimates spans the fossil age of the clade, the range of constrained estimates is narrower (and older) than the earliest angiosperm fossils. Results unambiguously indicate the relevance of constraints in reducing the variability of ages derived from different partitions of the data and diminishing the effect of the smoothing parameter. Constrained optimizations of divergence times and substitution rates across the phylogeny suggest appreciably different evolutionary dynamics for angiosperms and for gymnosperms. Whereas the gymnosperm crown group originated shortly after the origin of seed plants, a long time elapsed before the origin of crown group angiosperms. Although absolute age estimates of angiosperms and angiosperm clades are older than their earliest fossils, the estimated pace of phylogenetic diversification largely agrees with the rapid appearance of angiosperm lineages in stratigraphic sequences.  相似文献   

2.
In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior densities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration density parameters is taken into account.  相似文献   

3.
Aim To examine the biogeographical history of the angiosperm clade Caprifolieae (Caprifoliaceae) using parametric biogeographical reconstruction methods. The existing parametric method was extended to evaluate biogeographical reconstructions over the distribution of dated phylogenies. This method provides a framework for reconstructing large‐scale biogeography with parametric methods, while accounting for uncertainty in the phylogenetic relationships and divergence time. Location Asia, Europe and North America. Methods The biogeographical history of the major lineages of Caprifolieae was reconstructed over the posterior distribution of dated trees generated from Bayesian divergence‐time analyses. Results from a model with no geological constraints were compared with those from one where movement is disallowed across the North Atlantic after the Eocene. The most plausible scenarios were segregated at each node to test whether particular scenarios were reconstructed for particular divergence times. The parametric biogeographical method was also extended to estimate connectivity between areas so that the probability of dispersal between the major areas of the Northern Hemisphere could be explored. Results Phylogenetic results for Caprifolieae agreed with previous estimates using smaller sampling, but uncertainty remained despite efforts to resolve the relationships of the four genera within this clade using multiple markers. In addition to topological uncertainty, there were few fossils available for calibrations, resulting in large confidence intervals for divergence times. Divergence‐time analyses put the diversification of Caprifolieae at between 36 and 51 Ma and showed that Caprifolieae probably originated in Asia, with multiple movements into Europe and western and eastern North America. Main conclusions Newly developed parametric methods for biogeographical reconstruction incorporate more data and better models. Here, the parametric biogeographical reconstruction method has been extended to allow for topological and divergence‐time uncertainty. The analyses of Caprifolieae demonstrated that biogeographical hypotheses can be explored even where there are large confidence intervals on divergence times and uncertainty in topology. These results add to the growing evidence that Asia was an important source of Northern Hemisphere diversity throughout the Cenozoic.  相似文献   

4.
ZihengYANG 《动物学报》2004,50(4):645-656
众所周知 ,物种分化年代的估计对分子钟 (进化速率恒定 )假定很敏感。另一方面 ,在远缘物种 (例如哺乳纲不同目的动物 )的比较中 ,分子钟几乎总是不成立的。这样在估计分化时间时考虑不同进化区系的速率差异至为重要。最大似然法可以很自然地考虑这种速率差异 ,并且可以同时分析多个基因位点的资料以及同时利用多重化石校正数据。以前提出的似然法需要研究者将进化树的树枝按速率分组 ,本文提出一个近似方法以使这个过程自动化。本方法综合了以前的似然法、贝斯法及近似速率平滑法的一些特征。此外 ,还对算法加以改进 ,以适应综合数据分析时某些基因在某些物种中缺乏资料的情形。应用新提出的方法来分析马达加斯加的倭狐猴的分化年代 ,并与以前的似然法及贝斯法的分析进行了比较  相似文献   

5.
The use of fossil evidence to calibrate divergence time estimation has a long history. More recently, Bayesian Markov chain Monte Carlo has become the dominant method of divergence time estimation, and fossil evidence has been reinterpreted as the specification of prior distributions on the divergence times of calibration nodes. These so-called "soft calibrations" have become widely used but the statistical properties of calibrated tree priors in a Bayesian setting hashave not been carefully investigated. Here, we clarify that calibration densities, such as those defined in BEAST 1.5, do not represent the marginal prior distribution of the calibration node. We illustrate this with a number of analytical results on small trees. We also describe an alternative construction for a calibrated Yule prior on trees that allows direct specification of the marginal prior distribution of the calibrated divergence time, with or without the restriction of monophyly. This method requires the computation of the Yule prior conditional on the height of the divergence being calibrated. Unfortunately, a practical solution for multiple calibrations remains elusive. Our results suggest that direct estimation of the prior induced by specifying multiple calibration densities should be a prerequisite of any divergence time dating analysis.  相似文献   

6.
Inferring speciation times under an episodic molecular clock   总被引:5,自引:0,他引:5  
We extend our recently developed Markov chain Monte Carlo algorithm for Bayesian estimation of species divergence times to allow variable evolutionary rates among lineages. The method can use heterogeneous data from multiple gene loci and accommodate multiple fossil calibrations. Uncertainties in fossil calibrations are described using flexible statistical distributions. The prior for divergence times for nodes lacking fossil calibrations is specified by use of a birth-death process with species sampling. The prior for lineage-specific substitution rates is specified using either a model with autocorrelated rates among adjacent lineages (based on a geometric Brownian motion model of rate drift) or a model with independent rates among lineages specified by a log-normal probability distribution. We develop an infinite-sites theory, which predicts that when the amount of sequence data approaches infinity, the width of the posterior credibility interval and the posterior mean of divergence times form a perfect linear relationship, with the slope indicating uncertainties in time estimates that cannot be reduced by sequence data alone. Simulations are used to study the influence of among-lineage rate variation and the number of loci sampled on the uncertainty of divergence time estimates. The analysis suggests that posterior time estimates typically involve considerable uncertainties even with an infinite amount of sequence data, and that the reliability and precision of fossil calibrations are critically important to divergence time estimation. We apply our new algorithms to two empirical data sets and compare the results with those obtained in previous Bayesian and likelihood analyses. The results demonstrate the utility of our new algorithms.  相似文献   

7.
The estimation of phylogenetic relationships and divergence times among a group of organisms is a fundamental first step toward understanding its biological diversification. The time of the most recent or last common ancestor (LCA) of extant platyrrhines is one of the most controversial among scholars of primate evolution. Here we use two molecular based approaches to date the initial divergence of the platyrrhine clade, Bayesian estimations under a relaxed-clock model and substitution rate plus generation time and body size, employing the fossil record and genome datasets. We also explore the robustness of our estimations with respect to changes in topology, fossil constraints and substitution rate, and discuss the implications of our findings for understanding the platyrrhine radiation. Our results suggest that fossil constraints, topology and substitution rate have an important influence on our divergence time estimates. Bayesian estimates using conservative but realistic fossil constraints suggest that the LCA of extant platyrrhines existed at ca. 29 Ma, with the 95% confidence limit for the node ranging from 27–31 Ma. The LCA of extant platyrrhine monkeys based on substitution rate corrected by generation time and body size was established between 21–29 Ma. The estimates based on the two approaches used in this study recalibrate the ages of the major platyrrhine clades and corroborate the hypothesis that they constitute very old lineages. These results can help reconcile several controversial points concerning the affinities of key early Miocene fossils that have arisen among paleontologists and molecular systematists. However, they cannot resolve the controversy of whether these fossil species truly belong to the extant lineages or to a stem platyrrhine clade. That question can only be resolved by morphology. Finally, we show that the use of different approaches and well supported fossil information gives a more robust divergence time estimate of a clade.  相似文献   

8.
Dipsacales is an asterid angiosperm clade of ca. 1100 species, with most of its lineages occupying temperate regions of the Northern Hemisphere. A recent phylogenetic analysis based on 7593 nucleotides of chloroplast DNA recovered a well-resolved and strongly supported phylogenetic hypothesis, which we use here to estimate divergence times within the group. A molecular clock is strongly rejected, regardless of data partition. We used recently proposed methods that relax the assumption of rate constancy among lineages (local clocks, nonparametric rate smoothing, penalized likelihood, and Bayesian relaxed clock) to estimate the ages of major lineages. Age estimates for Dipsacales varied widely among markers and codon positions, and depended on the fossils used for calibration and method of analysis. Some methods yielded dates for the Dipsacales diversification that appear to be too old (prior to the presumed 125 my [million years] age of eudicots), and others suggested ages that are too young based on well-documented Dipsacales fossils. Concordant penalized likelihood and Bayesian studies imply that Dipsacales originated in the Cretaceous, as did its two major lineages, Adoxaceae and Caprifoliaceae. However, diversification of crown Adoxaceae and Caprifoliaceae mainly occurred in the Tertiary, with the origin of major lineages within these clades mainly occurring during the Eocene. Another round of diversification appears to have occurred in the Miocene. Several radiations, such as Valerianaceae in South America and Dipsacaceae around the Mediterranean, are even more recent. This study demonstrates the wide range of divergence times that can be obtained using different methods and data sets, and cautions against reliance on age estimates based on only a single gene or methodology. Despite this variance, significant conclusions can be made about the timing of Dipsacales evolution.  相似文献   

9.
Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.  相似文献   

10.
Molecular clock methods allow biologists to estimate divergence times, which in turn play an important role in comparative studies of many evolutionary processes. It is well known that molecular age estimates can be biased by heterogeneity in rates of molecular evolution, but less attention has been paid to the issue of potentially erroneous fossil calibrations. In this study we estimate the timing of diversification in Centrarchidae, an endemic major lineage of the diverse North American freshwater fish fauna, through a new approach to fossil calibration and molecular evolutionary model selection. Given a completely resolved multi-gene molecular phylogeny and a set of multiple fossil-inferred age estimates, we tested for potentially erroneous fossil calibrations using a recently developed fossil cross-validation. We also used fossil information to guide the selection of the optimal molecular evolutionary model with a new fossil jackknife method in a fossil-based model cross-validation. The centrarchid phylogeny resulted from a mixed-model Bayesian strategy that included 14 separate data partitions sampled from three mtDNA and four nuclear genes. Ten of the 31 interspecific nodes in the centrarchid phylogeny were assigned a minimal age estimate from the centrarchid fossil record. Our analyses identified four fossil dates that were inconsistent with the other fossils, and we removed them from the molecular dating analysis. Using fossil-based model cross-validation to determine the optimal smoothing value in penalized likelihood analysis, and six mutually consistent fossil calibrations, the age of the most recent common ancestor of Centrarchidae was 33.59 million years ago (mya). Penalized likelihood analyses of individual data partitions all converged on a very similar age estimate for this node, indicating that rate heterogeneity among data partitions is not confounding our analyses. These results place the origin of the centrarchid radiation at a time of major faunal turnover as the fossil record indicates that the most diverse lineages of the North American freshwater fish fauna originated at the Eocene-Oligocene boundary, approximately 34 mya. This time coincided with major global climate change from warm to cool temperatures and a signature of elevated lineage extinction and origination in the fossil record across the tree of life. Our analyses demonstrate the utility of fossil cross-validation to critically assess individual fossil calibration points, providing the ability to discriminate between consistent and inconsistent fossil age estimates that are used for calibrating molecular phylogenies.  相似文献   

11.
ABSTRACT: BACKGROUND: Duikers in the subfamily Cephalophinae are a group of tropical forest mammals believed to have first originated during the late Miocene. However, knowledge of phylogenetic relationships, pattern and timing of their subsequent radiation is poorly understood. Here we present the first multi-locus phylogeny of this threatened group of tropical artiodactyls and use a Bayesian uncorrelated molecular clock to estimate divergence times. RESULTS: A total of 4152 bp of sequence data was obtained from two mitochondrial genes and four nuclear introns. Phylogenies were estimated using maximum parsimony, maximum likelihood, and Bayesian analysis of concatenated mitochondrial, nuclear and combined datasets. A relaxed molecular clock with two fossil calibration points was used to estimate divergence times. The first was based on the age of the split between the two oldest subfamilies within the Bovidae whereas the second was based on the earliest known fossil appearance of the Cephalophinae and molecular divergence time estimates for the oldest lineages within this group. Findings indicate strong support for four major lineages within the subfamily, all of which date to the late Miocene/early Pliocene. The first of these to diverge was the dwarf duiker genus Philantomba, followed by the giant, eastern and western red duiker lineages, all within the genus Cephalophus. While these results uphold the recognition of Philantomba, they do not support the monotypic savanna-specialist genus Sylvicapra, which as sister to the giant duikers leaves Cephalophus paraphyletic. BEAST analyses indicate that most sister species pairs originated during the Pleistocene, suggesting that repeated glacial cycling may have played an important role in the recent diversification of this group. Furthermore, several red duiker sister species pairs appear to be either paraphyletic (C.callipygus/C. ogilbyi and C. harveyi/C. natalensis) or exhibit evidence of mitochondrial admixture (C. nigrifrons and C. rufilatus), consistent with their recent divergence and/or possible hybridization with each other. CONCLUSIONS: Molecular phylogenetic analyses suggest that Pleistocene-era climatic oscillations have played an important role in the speciation of this largely forest-dwelling group. Our results also reveal the most well supported species phylogeny for the subfamily to date, but also highlight several areas of inconsistency between our current understanding of duiker taxonomy and the evolutionary relationships depicted here. These findings may therefore prove particularly relevant to future conservation efforts, given that many species are presently regulated under the Convention for Trade in Endangered Species.  相似文献   

12.
The study of the historical biogeography of butterflies has been hampered by a lack of well-resolved phylogenies and a good estimate of the temporal span over which butterflies have evolved. Recently there has been surge of phylogenetic hypotheses for various butterfly groups, but estimating ages of divergence is still in its infancy for this group of insects. The main problem has been the sparse fossil record for butterflies. In this study I have used a surprisingly good fossil record for the subfamily Nymphalinae (Lepidoptera: Nymphalidae) to estimate the ages of diversification of major lineages using Bayesian relaxed clock methods. I have investigated the effects of varying priors on posterior estimates in the analyses. For this data set, it is clear that the prior of the rate of molecular evolution at the ingroup node had the largest effect on the results. Taking this into account, I have been able to arrive at a plausible history of lineage splits, which appears to be correlated with known paleogeological events. The subfamily appears to have diversified soon after the K/T event about 65 million years ago. Several splits are coincident with major paleogeological events, such as the connection of the African and Asian continents about 21 million years ago and the presence of a peninsula of land connecting the current Greater Antilles to the South American continent 35 to 33 million years ago. My results suggest that the age of Nymphalidae is older than the 70 million years speculated to be the age of butterflies as a whole.  相似文献   

13.
Aim In an attempt to use molecular and fossil data interactively in historical biogeography, we studied the phylogeography of five Plateumaris leaf beetles in Japan using mitochondrial cytochrome oxidase subunit I (COI) sequence data to explore interspecific differences in phylogeographical patterns and estimate the timings of colonization and geographical differentiation. Location A total of 461 beetles from five species on Hokkaido, Honshu and Kyushu islands of Japan were analysed with 117 beetles from three conspecies and two congeners from the mainland (Russia, including Sakhalin; Korea; Mongolia; Belgium; France; hereafter, the continent). Methods Using the sequence data from a 750‐bp portion of the COI gene, we studied the phylogeny of COI haplotypes, intraspecific population differentiation using analysis of molecular variance and the Mantel test, and intraspecific phylogeography using nested clade analysis. In addition, divergence times between the continental and Japanese lineages, as well as among the various Japanese lineages, were estimated using a Bayesian approach with node constraints based on fossil records of extant species. Results Three widely distributed species showed different degrees of geographical differentiation corresponding to their different colonization history in Japan. Bayesian estimates of divergence time revealed that one of two endemic species, which originated before the late Pliocene, attained intraspecific differentiation through the Pliocene and Pleistocene, whereas another endemic species has been confined in one locality, and three non‐endemic species colonized Japan after the mid‐Pleistocene. Main conclusions Molecular analyses of an insect group with relatively abundant fossil data can contribute greatly to the understanding of diverse biogeographical histories of related species in a region. Bayesian estimates of divergence time could be used to assess the variable evolutionary rates of the COI gene, and may be applied to other related insect species.  相似文献   

14.
Metrics of phylogenetic tree reliability, such as parametric bootstrap percentages or Bayesian posterior probabilities, represent internal measures of the topological reproducibility of a phylogenetic tree, while the recently introduced aLRT (approximate likelihood ratio test) assesses the likelihood that a branch exists on a maximum-likelihood tree. Although those values are often equated with phylogenetic tree accuracy, they do not necessarily estimate how well a reconstructed phylogeny represents cladistic relationships that actually exist in nature. The authors have therefore attempted to quantify how well bootstrap percentages, posterior probabilities, and aLRT measures reflect the probability that a deduced phylogenetic clade is present in a known phylogeny. The authors simulated the evolution of bacterial genes of varying lengths under biologically realistic conditions, and reconstructed those known phylogenies using both maximum likelihood and Bayesian methods. Then, they measured how frequently clades in the reconstructed trees exhibiting particular bootstrap percentages, aLRT values, or posterior probabilities were found in the true trees. The authors have observed that none of these values correlate with the probability that a given clade is present in the known phylogeny. The major conclusion is that none of the measures provide any information about the likelihood that an individual clade actually exists. It is also found that the mean of all clade support values on a tree closely reflects the average proportion of all clades that have been assigned correctly, and is thus a good representation of the overall accuracy of a phylogenetic tree.  相似文献   

15.
Estimation of divergence times is usually done using either the fossil record or sequence data from modern species. We provide an integrated analysis of palaeontological and molecular data to give estimates of primate divergence times that utilize both sources of information. The number of preserved primate species discovered in the fossil record, along with their geological age distribution, is combined with the number of extant primate species to provide initial estimates of the primate and anthropoid divergence times. This is done by using a stochastic forwards-modeling approach where speciation and fossil preservation and discovery are simulated forward in time. We use the posterior distribution from the fossil analysis as a prior distribution on node ages in a molecular analysis. Sequence data from two genomic regions (CFTR on human chromosome 7 and the CYP7A1 region on chromosome 8) from 15 primate species are used with the birth-death model implemented in mcmctree in PAML to infer the posterior distribution of the ages of 14 nodes in the primate tree. We find that these age estimates are older than previously reported dates for all but one of these nodes. To perform the inference, a new approximate Bayesian computation (ABC) algorithm is introduced, where the structure of the model can be exploited in an ABC-within-Gibbs algorithm to provide a more efficient analysis.  相似文献   

16.
The age of the angiosperms: a molecular timescale without a clock   总被引:8,自引:0,他引:8  
The age of the angiosperms has long been of interest to botanists and evolutionary biologists. Many early efforts to date the age of the angiosperms and evolutionary divergences within the angiosperm clade using a molecular clock have yielded age estimates that are grossly inconsistent with the fossil record. We investigated the age of angiosperms using Bayesian relaxed clock (BRC) and penalized likelihood (PL) approaches. Both of these methods allow the incorporation of multiple fossil constraints into the optimization procedure. The BRC method allows a range of values for among-lineage rate of substitution, from a nearly clocklike behavior to a condition in which each branch is allowed an optimal substitution rate, and also accounts for variation in molecular evolution across multiple genes. A topology derived from an analysis of genes from all three plant genomes for 71 taxa was used as a backbone. The effects on age estimates of different genes, single-gene versus concatenated datasets, and the inclusion and assumptions of fossils as age constraints were examined. In addition, the influence of prior distributions on estimates of divergence times was also explored. These results indicate that widely divergent age estimates can result from the different methods (198-139 million years ago), different sources of data (275-122 million years ago), and the inclusion of temporal constraints to topologies. Most dates, however, are between 180-140 million years ago, suggesting a Middle Jurassic-Early Cretaceous origin of flowering plants, predating the oldest unequivocal fossil angiosperms by about 45-5 million years. Nonetheless, these dates are consistent with other recent studies that have used methods that relax the assumption of a strict molecular clock and also agree with the hypothesis that the angiosperms may be somewhat older than the fossil record indicates.  相似文献   

17.
《Palaeoworld》2016,25(2):303-317
Despite the well-established phylogeny and good fossil record of branchiopods, a consistent macro-evolutionary timescale for the group remains elusive. This study focuses on the early branchiopod divergence dates where fossil record is extremely fragmentary or missing. On the basis of a large genomic dataset and carefully evaluated fossil calibration points, we assess the quality of the branchiopod fossil record by calibrating the tree against well-established first occurrences, providing paleontological estimates of divergence times and completeness of their fossil record. The maximum age constraints were set using a quantitative approach of Marshall (2008). We tested the alternative placements of Yicaris and Wujicaris in the referred arthropod tree via the likelihood checkpoints method. Divergence dates were calculated using Bayesian relaxed molecular clock and penalized likelihood methods. Our results show that the stem group of Branchiopoda is rooted in the late Neoproterozoic (563 ± 7 Ma); the crown-Branchiopoda diverged during middle Cambrian to Early Ordovician (478–512 Ma), likely representing the origin of the freshwater biota; the Phyllopoda clade diverged during Ordovician (448–480 Ma) and Diplostraca during Late Ordovician to early Silurian (430–457 Ma). By evaluating the congruence between the observed times of appearance of clade in the fossil record and the results derived from molecular data, we found that the uncorrelated rate model gave more congruent results for shallower divergence events whereas the auto-correlated rate model gives more congruent results for deeper events.  相似文献   

18.
A central challenge facing the temporal calibration of molecular phylogenies is finding a quantitative method for estimating maximum age constraints on lineage divergence times. Here, I provide such a method. This method requires an ultrametric tree generated without reference to the fossil record. Exploiting the fact that the relative branch lengths on the ultrametric tree are proportional to time, this method identifies the lineage with the greatest proportion of its true temporal range covered by the fossil record. The oldest fossil of this calibration lineage is used as the minimum age constraint. The maximum age constraint is obtained by adding a confidence interval onto the end point of the calibration lineage, thus making it possible to bracket the true divergence times of all lineages on the tree. The approach can also identify fossils that have been grossly misdated or misassigned to the phylogeny. The method assumes that the relative branch lengths on the ultrametric tree are accurate and that fossilization is random. The effect of violations of these assumptions is assessed. This method is simple to use and is illustrated with a reanalysis of Near et al.'s turtle data.  相似文献   

19.
A recent mtDNA study proposes a surprisingly deep (approximately 150 MYA) divergence between SE Asian and Australasian agamid lizards, consistent with ancient Gondwanan vicariance rather than dispersal across the Indonesian Archipelago. However, the analysis contains a fundamental error: use of rates of molecular evolution inferred from uncorrected sequence divergence to put a time frame on a tree with branch lengths greatly elongated by complex likelihood and rate-smoothing models. Furthermore, this date implies that basal splits within agamids occurred implausibly early, at least 300 MYA (100 Myr before the first fossil lizards and coincident with the earliest fossil reptiles). Analyses of the mtDNA data using more appropriate methods and new information from nuclear (c-mos) sequences suggest a much more recent divergence between SE Asian and Australian agamids (around 30 MYA). Using two fossil boundary dates, bootstrapping the c-mos data gives a 95% confidence interval for this divergence time that is sufficiently recent (14-41 MYA) to exclude an ancient Gondwanan vicariance and is more consistent with Miocene over-water dispersal. As with the mtDNA, the c-mos data implies implausibly old basal divergences among agamids if a Gondwanan age is assumed for the Australasian clade. The analyses also highlight how methods for creating ultrametric trees (especially nonparametric rate smoothing) can greatly modify branch lengths and, thus, always require internal calibrations. The errors associated with inferred dates in the previous study (inferred through parametric bootstrapping) were also unjustifiably low, as this method only considers stochasticity in the substitution model and ignores much larger sources of uncertainty, such as variation in character sampling, tree topology, and calibration accuracy.  相似文献   

20.
Although still controversial, estimation of divergence times using molecular data has emerged as a powerful tool to examine the tempo and mode of evolutionary change. Two primary obstacles in improving the accuracy of molecular dating are heterogeneity in DNA substitution rates and accuracy of the fossil record as calibration points. Recent methodological advances have provided powerful methods that estimate relative divergence times in the face of heterogeneity of nucleotide substitution rates among lineages. However, relatively little attention has focused on the accuracy of fossil calibration points that allow one to translate relative divergence times into absolute time. We present a new cross-validation method that identifies inconsistent fossils when multiple fossil calibrations are available for a clade and apply our method to a molecular phylogeny of living turtles with fossil calibration times for 17 of the 22 internal nodes in the tree. Our cross-validation procedure identified seven inconsistent fossils. Using the consistent fossils as calibration points, we found that despite their overall antiquity as a lineage, the most species-rich clades of turtles diversified well within the Cenozoic. Many of the truly ancient lineages of turtles are currently represented by a few, often endangered species that deserve high priority as conservation targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号