首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons.  相似文献   

2.
Bih-Hwa Shieh 《Fly》2011,5(4):356-368
Inherited retinal degeneration in Drosophila has been explored for insights into similar processes in humans. Based on the mechanisms, I divide these mutations in Drosophila into three classes. The first consists of genes that control the specialization of photoreceptor cells including the morphogenesis of visual organelles (rhabdomeres) that house the visual signaling proteins. The second class contains genes that regulate the activity or level of the major rhodopsin, Rh1, which is the light sensor and also provides a structural role for the maintenance of rhabdomeres. Some mutations in Rh1 (NinaE) are dominant due to constitutive activity or folding defects, like autosomal dominant retinitis pigmentosa (ADRP) in humans. The third class consists of genes that control the Ca2+ influx directly or indirectly by promoting the turnover of the second messenger and regeneration of PIP2, or mediate the Ca2+-dependent regulation of the visual response. These gene products are critical for the increase in cytosolic Ca2+ following light stimulation to initiate negative regulatory events. Here I will focus on the signaling mechanisms underlying the degeneration in norpA, and in ADRP-type NinaE mutants that produce misfolded Rh1. Accumulation of misfolded Rh1 in the ER triggers the unfolded protein response (UPR), while endosomal accumulation of activated Rh1 may initiate autophagy in norpA. Both autophagy and the UPR are beneficial for relieving defective endosomal trafficking and the ER stress, respectively. However, when photoreceptors fail to cope with the persistence of these stresses, a cell death program is activated leading to retinal degeneration.  相似文献   

3.
It is well-known that malfunctioning of the phototransduction mechanism stimulates the cell death machinery, resulting in retinal degeneration both in vertebrates and invertebrates. Genetic screens have often failed to identify modifiers underlying such degenerative syndromes because of the lethality associated with their fundamental function during development. A norpA P24 suppressor screen was successful performed with mosaic flies generated by the yeast site-specific recombination FLP-FRT system. Three independent diehard mutants, identified by mutagenizing the 2L FRT chromosome in the norpA P24 background, include both essential and non-essential mutations. Their suppressive effects on the norpA P24 -triggered retinal degeneration depend on the intensity and duration of light based on a deep pseudopupil analysis and histology. These results suggest that the suppressor screen using mosaic flies provides a valuable tool for recovering both essential and non-essential genes within the fundamental genetic pathways. Further studies of diehard mutants will provide insights into the disease mechanism that underlies the retinal degeneration of phototransduction mutants.  相似文献   

4.
Lysosomes play a central role in the degradation of proteins and other macromolecules. The mechanisms by which receptors are transferred to lysosomes for constitutive degradation are poorly understood. We have analyzed the processes that lead to the lysosomal delivery of the Fc receptor, FcRn. These studies provide support for a novel pathway for receptor delivery. Specifically, unlike other receptors that enter intraluminal vesicles in late endosomes, FcRn is transferred from the limiting membrane of such endosomes to lysosomes, and is rapidly internalized into the lysosomal lumen. By contrast, LAMP-1 persists on the limiting membrane. Receptor transfer is mediated by tubular extensions from late endosomes to lysosomes, or by interactions of the two participating organelles in kiss-and-linger-like processes, whereas full fusion is rarely observed. The persistence of FcRn on the late endosomal limiting membrane, together with selective transfer to lysosomes, allows this receptor to undergo recycling or degradation. Consequently, late endosomes have functional plasticity, consistent with the presence of the Rab5 GTPase in discrete domains on these compartments.  相似文献   

5.
Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity.  相似文献   

6.
Lysosomes are the site of degradation of obsolete intracellular material during autophagy and of extracellular macromolecules following endocytosis and phagocytosis. The membrane of lysosomes and late endosomes is enriched in highly glycosylated transmembrane proteins of largely unknown function. Significant progress has been made in recent years towards elucidating the pathways by which these lysosomal membrane proteins are delivered to late endosomes and lysosomes. While some lysosomal membrane proteins follow the constitutive secretory pathway and reach lysosomes indirectly via the cell surface and endocytosis, others exit the trans-Golgi network in clathrin-coated vesicles for direct delivery to endosomes and lysosomes. Sorting from the Golgi or the plasma membrane into the endosomal system is mediated by signals encoded by the short cytosolic domain of these proteins. This review will discuss the role of lysosomal membrane proteins in the biogenesis of the late endosomal and lysosomal membranes, with particular emphasis on the structural features and molecular mechanisms underlying the intracellular trafficking of these proteins.  相似文献   

7.
Summary ThenorpA H44 phototransduction mutant ofDrosophila melanogaster, an allele that, on eclosion, does not exhibit a receptor potential was found, at later ages, to undergo light and temperature dependent degeneration of its photoreceptors as well as decreases in rhodopsin concentration. Pseudopupil measurements and light and electron microscopy were used to monitor the structure of the photoreceptors. WhennorpA H44 flies were maintained exclusively in the dark, no changes in structure or rhodopsin concentration were observed. When maintained on a 12 h light-12 h dark cycle, structural changes were first observed at 6 days of age for flies maintained at 24 °C or at 12 days of age for flies maintained at 19 °C. When the light-dark cycle was initiated after 10 days in the dark there was a more rapid loss of rhodopsin concentration and pseudopupil. The data suggest that even in the dark, although no obvious changes in structure or rhodopsin concentration were observed, certain processes that support these components had been affected.NorpA P12 , an allele that exhibits small receptor potential amplitudes, also displayed age- and light-dependent photoreceptor degeneration and decreases in rhodopsin concentration, whereas no degeneration or decreases in rhodopsin were observed innorpA P16 , an allele that exhibits receptor potential amplitudes similar to those of wild-type. The data suggest that the processes that affect phototransduction, such as the phosphatidylinositol cycle, have a long-term role in the maintenance of rhodopsin concentration and photoreceptor integrity.Abbreviation PI phosphatidylinositol  相似文献   

8.
Appropriate clearance of apoptotic cells (cell corpses) is an important step of programmed cell death. Although genetic and biochemical studies have identified several genes that regulate the engulfment of cell corpses, how these are degraded after being internalized in engulfing cell remains elusive. Here, we show that VPS-18, the Caenorhabditis elegans homologue of yeast Vps18p, is critical to cell corpse degradation. VPS-18 is expressed and functions in engulfing cells. Deletion of vps-18 leads to significant accumulation of cell corpses that are not degraded properly. Furthermore, vps-18 mutation causes strong defects in the biogenesis of endosomes and lysosomes, thus affecting endosomal/lysosomal protein degradation. Importantly, we demonstrate that phagosomes containing internalized cell corpses are unable to fuse with lysosomes in vps-18 mutants. Our findings thus provide direct evidence for the important role of endosomal/lysosomal degradation in proper clearance of apoptotic cells during programmed cell death.  相似文献   

9.
The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein-2 (LAMP-2) and LAMP-1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP-1 and LAMP-2 (LAMP−/−), low-density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild-type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP−/− cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP-2 deficient liver and that overexpression of LAMP-2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP-2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP−/− cells was diminished by overexpression of any of the three isoforms of LAMP-2, but not by LAMP-1. The LAMP-2 luminal domain, the membrane-proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP-2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone-mediated autophagy function of LAMP-2.  相似文献   

10.
CLC-7 is a member of the voltage-gated chloride channels family. It resides mainly in the late endosomes, lysosomes and the ruffled membrane of osteoclasts. Mice deficient in the ubiquitously expressed ClC-7 Cl channel show severe osteopetrosis and retinal degeneration. In the present review, some of the known features of CLC-7 such as structure, function and its roles in physiological or pathophysiological processes are highlighted.  相似文献   

11.
The Drosophila visual system has provided a model to study phototransduction and retinal degeneration. To identify new candidate proteins that contribute to these processes, we conducted a genome-wide screen for genes expressed predominately in the eye, using DNA microarrays. This screen appeared to be comprehensive as it led to the identification of all 22 eye-enriched genes previously shown to function in phototransduction or implicated in retinal degeneration. In addition, we identified 93 eye-enriched genes whose roles have not been previously defined. One of the eye-enriched genes encoded a member of a large family of transmembrane proteins, referred to as tetraspanins. We created a null mutation in the eye-enriched tetraspanin, Sunglasses (Sun), which resulted in light-induced retinal degeneration. We found that the Sun protein was distributed primarily in lysosomes, and functioned in a long-known but poorly understood phenomenon of light-induced degradation of rhodopsin. We propose that lysosomal tetraspanins in mammalian cells may also function in the downregulation of rhodopsin and other G-protein-coupled receptors, in response to intense or prolonged agonist stimulation.  相似文献   

12.
The homotypic fusion and protein sorting (HOPS) complex is a multisubunit tethering complex that in yeast regulates membrane fusion events with the vacuole, the yeast lysosome. Mammalian homologs of all HOPS components have been found, but little is known about their function. Here, we studied the role of hVps41 and hVps39, two components of the putative human HOPS complex, in the endo‐lysosomal pathway of human cells. By expressing hemagglutinin (HA)‐tagged constructs, we show by immunoelectron microscopy (immunoEM) that both hVps41 and hVps39 associate with the limiting membrane of late endosomes as well as lysosomes. Small interference RNA (siRNA)‐mediated knockdown of hVps41 or hVps39 resulted in an accumulation of late endosomes, a depletion in the number of lysosomes and a block in the degradation of endocytosed cargo. Lysosomal pH and cathepsin B activity remained unaltered in these conditions. By immunoEM we found that hVps41 or hVps39 knockdown impairs homotypic fusion between late endosomes as well as heterotypic fusion between late endosomes and lysosomes. Thus, our data show that both hVps41 and hVps39 are required for late endosomal–lysosomal fusion events and the delivery of endocytic cargo to lysosomes in human cells.  相似文献   

13.
Q344ter is a naturally occurring rhodopsin mutation in humans that causes autosomal dominant retinal degeneration through mechanisms that are not fully understood, but are thought to involve an early termination that removed the trafficking signal, QVAPA, leading to its mislocalization in the rod photoreceptor cell. To better understand the disease mechanism(s), transgenic mice that express Q344ter were generated and crossed with rhodopsin knockout mice. Dark-reared Q344terrho+/− mice exhibited retinal degeneration, demonstrating that rhodopsin mislocalization caused photoreceptor cell death. This degeneration is exacerbated by light-exposure and is correlated with the activation of transducin as well as other G-protein signaling pathways. We observed numerous sub-micrometer sized vesicles in the inter-photoreceptor space of Q344terrho+/− and Q344terrho−/− retinas, similar to that seen in another rhodopsin mutant, P347S. Whereas light microscopy failed to reveal outer segment structures in Q344terrho−/− rods, shortened and disorganized rod outer segment structures were visible using electron microscopy. Thus, some Q344ter molecules trafficked to the outer segment and formed disc structures, albeit inefficiently, in the absence of full length wildtype rhodopsin. These findings helped to establish the in vivo role of the QVAPA domain as well as the pathways leading to Q344ter-induced retinal degeneration.  相似文献   

14.
Using a cell-free content mixing assay containing rat liver endosomes and lysosomes in the presence of pig brain cytosol, we demonstrated that after incubation at 37°C, late endosome–lysosome hybrid organelles were formed, which could be isolated by density gradient centrifugation. ImmunoEM showed that the hybrids contained both an endocytosed marker and a lysosomal enzyme. Formation of the hybrid organelles appeared not to require vesicular transport between late endosomes and lysosomes but occurred as a result of direct fusion. Hybrid organelles with similar properties were isolated directly from rat liver homogenates and thus were not an artifact of cell-free incubations. Direct fusion between late endosomes and lysosomes was an N-ethylmaleimide–sensitive factor– dependent event and was inhibited by GDP-dissociation inhibitor, indicating a requirement for a rab protein. We suggest that in cells, delivery of endocytosed ligands to an organelle where proteolytic digestion occurs is mediated by direct fusion of late endosomes with lysosomes. The consequences of this fusion to the maintenance and function of lysosomes are discussed.  相似文献   

15.
Late endocytic organelles including lysosomes are highly dynamic acidic organelles. Late endosomes and lysosomes directly fuse for content mixing to form hybrid organelles, from which lysosomes are reformed. It is not fully understood how these processes are regulated and maintained. Here we show that the Caenorhabditis elegans ARL-8 GTPase is localized primarily to lysosomes and involved in late endosome-lysosome fusion in the macrophage-like coelomocytes. Loss of arl-8 results in an increase in the number of late endosomal/lysosomal compartments, which are smaller than wild type. In arl-8 mutants, late endosomal compartments containing endocytosed macromolecules fail to fuse with lysosomal compartments enriched in the aspartic protease ASP-1. Furthermore, loss of arl-8 strongly suppresses formation of enlarged late endosome-lysosome hybrid organelles caused by mutations of cup-5, which is the orthologue of human mucolipin-1. These findings suggest that ARL-8 mediates delivery of endocytosed macromolecules to lysosomes by facilitating late endosome-lysosome fusion.  相似文献   

16.
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin‐directed AAA‐ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo‐Lysosomal Damage Response. Together, they act downstream of K63‐linked ubiquitination and p62 recruitment, and selectively remove K48‐linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases.  相似文献   

17.
Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac) mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs) in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC) that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj), causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.  相似文献   

18.
Iridoviruses are a family of large double-stranded DNA (dsDNA) viruses that are composed of 5 genera, including the Lymphocystivirus, Ranavirus, Megalocytivirus, Iridovirus, and Chloriridovirus genera. The frog virus 3 (FV3) 75L gene is a nonessential gene that is highly conserved throughout the members of the Ranavirus genus but is not found in other iridoviruses. FV3 75L shows high sequence similarity to a conserved domain found in the C terminus of LITAF, a small cellular protein with unknown function. Here we show that FV3 75L localizes to early endosomes, while LITAF localizes to late endosomes/lysosomes. Interestingly, when FV3 75L and LITAF are cotransfected into cells, LITAF can alter the subcellular localization of FV3 75L to late endosomes/lysosomes, where FV3 75L then colocalizes with LITAF. In addition, we demonstrated that virally produced 75L colocalizes with LITAF. We confirmed a physical interaction between LITAF and FV3 75L but found that this interaction was not mediated by two PPXY motifs in the N terminus of LITAF. Mutation of two PPXY motifs in LITAF did not affect the colocalization of LITAF and FV3 75L but did change the location of the two proteins from late endosomes/lysosomes to early endosomes.  相似文献   

19.
《Autophagy》2013,9(8):1190-1193
Autophagy is a highly conserved housekeeping pathway that plays a critical role in the removal of aged or damaged intracellular organelles and their delivery to lysosomes for degradation.1,2 Autophagy begins with the formation of membranes arising in part from the endoplasmic reticulum, that elongate and fuse engulfing cytoplasmic constituents into a classic double-membrane bound nascent autophagosome. These early autophagosomes undergo a stepwise maturation process to form the late autophagosome or amphisome that ultimately fuses with a lysosome. Efficient autophagy is dependent on an equilibrium between the formation and elimination of autophagosomes; thus, a deficit in any part of this pathway will cause autophagic dysfunction. Autophagy plays a role in aging and age-related diseases. 1,2,7 However, few studies of autophagy in retinal disease have been reported.

Recent studies show that autophagy and changes in lysosomal activity are associated with both retinal aging and age-related macular degeneration (AMD).3,4 This article describes methods which employ the target protein LC3 to monitor autophagic flux in retinal pigment epithelial cells. During autophagy, the cytosolic form of LC3 (LC3-I) is processed and recruited to the phagophore where it undergoes site specific proteolysis and lipidation near the C terminus to form LC3-II.5 Monitoring the formation of cellular autophagosome puncta containing LC3 and measuring the ratio of LC3-II to LC3-I provides the ability to monitor autophagy flux in the retina.  相似文献   

20.
Aberrant metabolic forms of the prion protein (PrP), membrane-associated CtmPrP and cytosolic (cyPrP) interact with the cytosolic ubiquitin E3 ligase, Mahogunin Ring Finger-1 (MGRN1) and affect lysosomes. MGRN1 also interacts with and ubiquitinates TSG101, an ESCRT-I protein, involved in endocytosis. We report that MGRN1 modulates macroautophagy. In cultured cells, functional depletion of MGRN1 or overexpression of CtmPrP and cyPrP blocks autophagosome–lysosome fusion, alleviates the autophagic flux and its degradative competence. Concurrently, the degradation of cargo from the endo-lysosomal pathway is also affected. This is significant because catalytic inactivation of MGRN1 alleviates fusion of lysosomes with either autophagosomes (via amphisomes) or late endosomes (either direct or mediated through amphisomes), without drastically perturbing maturation of late endosomes, generation of amphisomes or lysosomal proteolytic activity. The compromised lysosomal fusion events are rescued by overexpression of TSG101 and/or its monoubiquitination in the presence of MGRN1. Thus, for the first time we elucidate that MGRN1 simultaneously modulates both autophagy and heterophagy via ubiquitin-mediated post-translational modification of TSG101.All cells rely on efficient lysosomal degradation for maintenance of their homoeostasis, perturbations in this leads to several debilitating diseases. Lysosomes are specialized organelles that degrade macromolecules received from the secretory, endocytic, autophagic and phagocytic pathways. Autophagy is considered as a ubiquitous bulk degradation mechanism of damaged organelles and long lived, misfolded or accumulated proteins.1 Activated growth factors, hormones, cytokine receptors, misfolded plasma membrane proteins are internalized by endocytosis and delivered to the lysosomes via the multivesicular bodies (MVBs), a mechanism also termed as heterophagy. Interestingly defects in either of the pathways have been associated with the pathogenesis of numerous neurodegenerative diseases.2Perturbations in autophagy-related protein (ATG) genes, Atg7 and Atg5 lead to developmental defects during organogenesis3, 4 or even neonatal death.5 Similarly, studies have reported that null mutations in the lysosomal membrane protein LAMP2 result in general myopathy and cardiomyopathy.6, 7 Lysosomal degradation is essential for normal physiological activity in neurons. Anomalies at various stages in the maturation of the endosomes through MVBs to lysosomes or during the de novo generation of autophagosomes result in neurodegenerative diseases like Alzheimer''s disease and Huntington''s disease.8, 9Many other neurodegenerative diseases like Parkinson''s disease, Niemann–Pick type C disease, frontotemporal dementia (FTD) and amyotropic lateral sclerois (ALS) are also referred as ‘lysosomal diseases''. These are all associated with dysfunction of the ESCRT (endosomal sorting complex required for transport) machinery, comprising a pathway of five distinct complexes (ESCRTs -0, -I, -II and -III, and Vps4), which recognize and sort ubiquitinated cargo through an exquisite division of labor.10 Depletion or mutations in the molecular players of the ESCRT complexes severely affects the structure and function of endo-lysosomal compartments.11, 12, 13, 14 These proteins also facilitate autophagy by affecting fusion events involving lysosomes, endosomes and autophagosomes.15, 16, 17, 18, 19, 20In context of this, it is worth indicating that loss of Mgrn1 (Mahogunin Ring Finger-1) function leads to late-onset spongiform neurodegeneration in selected brain regions, very similar to prion disease pathology.21 Catalytically MGRN1, a cytosolic ubiquitin E3 ligase is implicated in lysosomal dysfunction.22, 23 MGRN1 can interact with a transmembrane prion protein (PrP) isoform (CtmPrP), associated with familial or inherited disease.23 It is also suggested to be involved in the clearance of cytosolic chaperone heat shock 70 kDa protein (HSP70)-associated misfolded proteins.24 Although it is prudent to suggest that MGRN1 could have a role in certain familial prion diseases, recent evidence does not indicate its involvement in transmissible spongiform encephalopathy.25 However, this does not undermine the role of MGRN1 in regulating lysosomal degradation.Here, we dissect the mechanism by which MGRN1 regulates lysosomal degradation. We have identified a novel role MGRN1 in modulating autophagy. Depletion of MGRN1 disrupts both amphisomal–lysosomal and endo-lysosomal degradation pathways. These effects are due to the blocked fusion of vesicles with lysosomes and can be rescued by overexpression of TSG101 and/or its monoubiquitination. MGRN1 can modulate clearance of cargo at the lysosomes by regulating vesicular fusion events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号