首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Lung cancer represents the leading cause of cancer-related death in developed countries. Despite the advances in diagnostic and therapeutic techniques, the 5-year survival rate remains low. The research for novel therapies directed to biological targets has modified the therapeutic approach, but the frequent engagement of resistance mechanisms and the substantial costs, limit the ability to reduce lung cancer mortality. MicroRNAs (miRNAs) are small noncoding RNAs with known regulatory functions in cancer initiation and progression. In this study we found that mir-660 expression is downregulated in lung tumors compared with adjacent normal tissues and in plasma samples of lung cancer patients with poor prognosis, suggesting a potential functional role of this miRNA in lung tumorigenesis. Transient and stable overexpression of mir-660 using miRNA mimics reduced migration, invasion, and proliferation properties and increased apoptosis in p53 wild-type lung cancer cells (NCI-H460, LT73, and A549). Furthermore, stable overexpression using lentiviral vectors in NCI-H460 and A549 cells inhibited tumor xenograft growth in immunodeficient mice (95 and 50% reduction compared with control, respectively), whereas the effects of mir-660 overexpression were absent in H1299, a lung cancer cell line lacking p53 locus, both in in vitro and in vivo assays. We identified and validated mouse double minute 2 (MDM2) gene, a key regulator of the expression and function of p53, as a new direct target of mir-660. In addition, mir-660 expression reduced both mRNA and protein expression of MDM2 in all cell lines and stabilized p53 protein levels resulting in an upregulation of p21WAF1/CIP1 in p53 wild-type cells. Our finding supports that mir-660 acts as a tumor suppressor miRNA and we suggest the replacement of mir-660 as a new therapeutic approach for p53 wild-type lung cancer treatment.Lung cancer is the leading cause of cancer death worldwide, resulting in >1.4 million deaths/year.1 Lung tumors are often discovered as locally advanced or metastatic disease, and despite improvements in molecular diagnosis and targeted therapies, the overall 5-year survival rate remains in the 10–20% range. Indeed, nonsmall cell lung cancer (NSCLC) is poorly chemosensitive to most of the available agents with response rates ranging from 10 to 25%.2 The discovery of recurrent mutations in the epidermal growth factor receptor (EGFR) kinase,3 as well as gene fusion products involving the anaplastic lymphoma kinase (ALK),4 has led to a marked change in the treatment of patients with lung adenocarcinoma, the most common type of lung cancer.5, 6 To date, patients with mutations in the EGFR gene, suitable for targeting by EGFR tyrosine kinase inhibitors, represent roughly 10%, whereas the subgroup of tumors with ALK rearrangements, targeted by ALK inhibitors, is only ~5%.7 Thus, the majority of lung tumors lack effective treatment and novel therapeutic strategies are still needed.MicroRNAs (miRNAs) are short noncoding RNAs, 20–24 nucleotides long, that have important roles in almost all biological pathways,8, 9, 10, 11 and influence cancer-relevant processes, such as proliferation,12 cell cycle,13 apoptosis,14 and migration.15 Many studies have reported the critical role of miRNAs in lung cancer pathogenesis and their potential as biomarkers for lung cancer risk stratification,16 outcome prediction,17 and classification of histological subtypes.18, 19 miRNAs are actively released by various cell types and can be detected in biological fluids, such as plasma and serum, making them suitable as circulating biomarkers in NSCLC.20, 21There is limited evidence of mir-660 deregulation in cancer and little is known about its role in lung tumorigenesis and its putative target genes. Mir-660 has been reported to be upregulated in chronic lymphocytic leukemia22, 23 and in leukemic cells after treatment with 4-hydroxynonenal, a compound that induces differentiation and blocks proliferation of leukemic cells.24 In a previous study we demonstrated that mir-660 was one of the 24 miRNAs deregulated in plasma samples of NSCLC patients identified in a low-dose computed tomography (LDCT) screening trial.20The p53 tumor suppressor protein is a key regulator of cell cycle G0/G1 checkpoint, senescence, and apoptosis in response to cellular stress signals.25, 26 Mouse double minute 2 (MDM2), a p53–E3 ubiquitin ligase,27 is the principal negative regulator of the expression level and function of p53.28, 29 Several studies have illustrated different mechanisms of p53 regulation by MDM2,30, 31 such as binding transactivation region of p53,32, 33 promoting nuclear export and cytoplasmic accumulation of p53 by monoubiquitination,34, 35 and inducing p53 proteosomal degradation by polyubiquitination.36 In addition, MDM2 gene has been reported to be amplified or overexpressed in a variety of human cancers, such as sarcoma,37 lymphoma,38 breast cancer,39 lung cancer,40 and testicular germ cell tumor.41 Several miRNAs targeting MDM2 have been identified, such as the mir-143/mir-145 cluster that can be induced by p53,42 as well as mir-25 and mir-32, known to inhibit tumor glioblastoma growth in mouse brain.43In this study, we report that mir-660 is downregulated in tissue and plasma samples of lung cancer patients and demonstrate that mir-660 replacement impairs the functionality of p53 wild-type (wt) lung cancer cells and inhibits in vitro and in vivo tumor growth. We showed that all the effects observed after mir-660 overexpression were absent in p53 ko cells, identified MDM2 as mir-660 direct target gene and indicate impairment of the MDM2/p53 interaction as the mechanism underlying tumor growth inhibition.  相似文献   

10.
11.
12.
13.
CD47 signaling in endothelial cells has been shown to suppress angiogenesis, but little is known about the link between CD47 and endothelial senescence. Herein, we demonstrate that the thrombospondin-1 (TSP1)-CD47 signaling pathway is a major mechanism for driving endothelial cell senescence. CD47 deficiency in endothelial cells significantly improved their angiogenic function and attenuated their replicative senescence. Lack of CD47 also suppresses activation of cell cycle inhibitors and upregulates the expression of cell cycle promoters, leading to increased cell cycle progression. Furthermore, TSP1 significantly accelerates replicative senescence and associated cell cycle arrest in a CD47-dependent manner. These findings demonstrate that TSP1-CD47 signaling is an important mechanism driving endothelial cell senescence. Thus, TSP1 and CD47 provide attractive molecular targets for treatment of aging-associated cardiovascular dysfunction and diseases involving endothelial dysregulation.Endothelial cell (EC) senescence is accompanied with vascular dysfunction, including arterial stiffening and remodeling,1 impaired angiogenesis,2, 3 reduced endothelial repair capability and increased incidence of cardiovascular disease.4, 5, 6 Cellular senescence can occur in vivo or in vitro in response to various stressors,7, 8, 9, 10 leading to suppression of cell proliferation. EC senescence has been reported to contribute to the pathogenesis of age-associated vascular diseases, such as atherosclerosis.11 Thus, further understanding the mechanisms of EC senescence may help to identify effective targets for antisenescence therapy and treatment aging-associated cardiovascular disorders.Previous studies have shown that the secreted matricellular protein thrombospondin-1 (TSP1) is as potent inhibitor of angiogenesis12 and its antiangiogenic activity is mediated by its receptors, CD3613, 14 and CD47.15, 16 CD47 is a ubiquitously expressed transmembrane protein that serves as a ligand for signal regulatory protein-α and is a signaling receptor of TSP1. The TSP1-CD47 pathway has an important role in several fundamental cellular functions, including proliferation, apoptosis, inflammation and atherosclerotic response.17 Ligation of CD47 by TSP1 has been shown to inhibit nitric oxide (NO)/cGMP signaling in vascular cells, leading to suppression of angiogenic responses.16 Recently, it was reported that lack of CD47 expression in ECs may enable these cells to spontaneously gain characteristics of embryonic stem cells.18 However, the potential role of CD47 in regulation of EC senescence has not been well explored. The present study was initiated to determine the role and mechanisms of TSP1-CD47 signaling pathway in regulating cell cycle progression and replicative senescence of ECs.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号