首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.  相似文献   

2.
3.
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central and peripheral nervous system and are localized at synaptic and extrasynaptic sites of the cell membrane. However, the mechanisms regulating the localization of nicotinic receptors in distinct domains of the cell membrane are not well understood. N-cadherin is a cell adhesion molecule that mediates homotypic binding between apposed cell membranes and regulates the actin cytoskeleton through protein interactions with the cytoplasmic domain. At synaptic contacts, N-cadherin is commonly localized adjacent to the active zone and the postsynaptic density, suggesting that N-cadherin contributes to the assembly of the synaptic complex. To examine whether N-cadherin homotypic binding regulates the cell surface localization of nicotinic receptors, this study used heterologous expression of N-cadherin and α3β4 nAChR subunits C-terminally fused to a myc-tag epitope in Chinese hamster ovary cells. Expression levels of α3β4 nAChRs at cell-cell contacts and at contact-free cell membrane were analyzed by confocal microscopy. α3β4 nAChRs were found distributed over the entire surface of contacting cells lacking N-cadherin. In contrast, N-cadherin-mediated cell-cell contacts were devoid of α3β4 nAChRs. Cell-cell contacts mediated by N-cadherin-deleted proteins lacking the β-catenin binding region or the entire cytoplasmic domain showed control levels of α3β4 nAChRs expression. Inhibition of actin polymerization with latrunculin A and cytochalasin D did not affect α3β4 nAChRs localization within N-cadherin-mediated cell-cell contacts. However, treatment with the Rho associated kinase inhibitor Y27632 resulted in a significant increase in α3β4 nAChR levels within N-cadherin-mediated cell-cell contacts. Analysis of α3β4 nAChRs localization in polarized Caco-2 cells showed specific expression on the apical cell membrane and colocalization with apical F-actin and the actin nucleator Arp3. These results indicate that actomyosin contractility downstream of N-cadherin homotypic binding regulates the cell surface localization of α3β4 nAChRs presumably through interactions with a particular pool of F-actin.  相似文献   

4.
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9′). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.  相似文献   

5.
The initial coupling between ligand binding and channel gating in the human α7 nicotinic acetylcholine receptor (nAChR) has been investigated with targeted molecular dynamics (TMD) simulation. During the simulation, eight residues at the tip of the C-loop in two alternating subunits were forced to move toward a ligand-bound conformation as captured in the crystallographic structure of acetylcholine binding protein (AChBP) in complex with carbamoylcholine. Comparison of apo- and ligand-bound AChBP structures shows only minor rearrangements distal from the ligand-binding site. In contrast, comparison of apo and TMD simulation structures of the nAChR reveals significant changes toward the bottom of the ligand-binding domain. These structural rearrangements are subsequently translated to the pore domain, leading to a partly open channel within 4 ns of TMD simulation. Furthermore, we confirmed that two highly conserved residue pairs, one located near the ligand-binding pocket (Lys145 and Tyr188), and the other located toward the bottom of the ligand-binding domain (Arg206 and Glu45), are likely to play important roles in coupling agonist binding to channel gating. Overall, our simulations suggest that gating movements of the α7 receptor may involve relatively small structural changes within the ligand-binding domain, implying that the gating transition is energy-efficient and can be easily modulated by agonist binding/unbinding.  相似文献   

6.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   

7.
Lipid rafts, specialized membrane microdomains in the plasma membrane rich in cholesterol and sphingolipids, are hot spots for a number of important cellular processes. The novel nicotinic acetylcholine receptor (nAChR) mutation αC418W, the first lipid-exposed mutation identified in a patient that causes slow channel congenital myasthenia syndrome was shown to be cholesterol-sensitive and to accumulate in microdomains rich in the membrane raft marker protein caveolin-1. The objective of this study is to gain insight into the mechanism by which lateral segregation into specialized raft membrane microdomains regulates the activable pool of nAChRs. We performed fluorescent recovery after photobleaching (FRAP), quantitative RT-PCR, and whole cell patch clamp recordings of GFP-encoding Mus musculus nAChRs transfected into HEK 293 cells to assess the role of cholesterol and caveolin-1 (CAV-1) in the diffusion, expression, and functionality of the nAChR (WT and αC418W). Our findings support the hypothesis that a cholesterol-sensitive nAChR might reside in specialized membrane microdomains that upon cholesterol depletion become disrupted and release the cholesterol-sensitive nAChRs to the pool of activable receptors. In addition, our results in HEK 293 cells show an interdependence between CAV-1 and αC418W that could confer end plates rich in αC418W nAChRs to a susceptibility to changes in cholesterol levels that could cause adverse drug reactions to cholesterol-lowering drugs such as statins. The current work suggests that the interplay between cholesterol and CAV-1 provides the molecular basis for modulating the function and dynamics of the cholesterol-sensitive αC418W nAChR.  相似文献   

8.
Nicotinic acetylcholine receptor (nAChR) agonists, such as epibatidine and its molecular derivatives, are potential therapeutic agents for a variety of neurological disorders. In order to identify determinants for subtype-selective agonist binding, it is important to determine whether an agonist binds in a common orientation in different nAChR subtypes. To compare the mode of binding of epibatidine in a muscle and a neuronal nAChR, we photolabeled Torpedo α2βγδ and expressed human α4β2 nAChRs with [3H]epibatidine and identified by Edman degradation the photolabeled amino acids. Irradiation at 254 nm resulted in photolabeling of αTyr198 in agonist binding site Segment C of the principal (+) face in both α subunits and of γLeu109 and γTyr117 in Segment E of the complementary (−) face, with no labeling detected in the δ subunit. For affinity-purified α4β2 nAChRs, [3H]epibatidine photolabeled α4Tyr195 (equivalent to Torpedo αTyr190) in Segment C as well as β2Val111 and β2Ser113 in Segment E (equivalent to Torpedo γLeu109 and γTyr111, respectively). Consideration of the location of the photolabeled amino acids in homology models of the nAChRs based upon the acetylcholine-binding protein structure and the results of ligand docking simulations suggests that epibatidine binds in a single preferred orientation within the α-γ transmitter binding site, whereas it binds in two distinct orientations in the α4β2 nAChR.Nicotinic acetylcholine receptors (nAChRs)3 are prototypical members of the Cys loop superfamily of neurotransmitter-gated ion channels that mediate the actions of the neurotransmitter acetylcholine (1). nAChRs from vertebrate skeletal muscle and the electric organs of Torpedo rays are heteropentamers of homologous subunits with a stoichiometry of 2α:β:γ(ϵ):δ that are arranged pseudosymmetrically around central cation-selective ion channels (1, 2). There are 12 mammalian neuronal nAChR subunit genes: nine neuronal α subunits (α2–α10) and three neuronal β subunits (β2–β4). The α4β2 nAChR is the most abundant and widely distributed nAChR subtype expressed in the brain and is a major target for potential therapeutic agents for neurological diseases and conditions, including nicotine dependence and Alzheimer and Parkinson diseases (3, 4). Although the ratio of α4 to β2 subunit in vivo is uncertain, expressed receptors containing either three α4 or three β2 subunits have distinct pharmacological properties (5, 6).The agonist binding sites (ABS) of nAChRs are located within the amino-terminal extracellular domain at the interface of adjacent subunits (α-γ and α-δ in the Torpedo nAChR), and different nAChR subunit combinations form ABS with distinct physical and pharmacological properties (3, 7). Affinity labeling studies with Torpedo nAChR and site-directed mutational analyses of muscle and neuronal nAChRs identified key amino acids delineating the ABS from three noncontiguous stretches of the α subunit (Segments A-C, the principal component (+ face)) and three noncontiguous regions of the non-α subunit (Segments D–F, the complementary component (− face)) (8, 9). The three-dimensional structure of the ABS in the absence and presence of nAChR agonists or competitive antagonists has been determined for snail acetylcholine-binding proteins (AChBPs) that are soluble homopentamers homologous to the extracellular (amino-terminal) domain of a nAChR (1012). In the AChBP, four aromatic amino acids from Segments A–C that are conserved within α subunits, along with a conserved Trp in Segment D, form a core aromatic “pocket” with a dimension optimal for accommodation of a trimethylammonium group. The other amino acids in the non-α subunits closest to the aromatic pocket, which are generally not conserved among γ, δ, or neuronal β subunits, are on three antiparallel β strands. The AChBP structure was used to refine the structure of the Torpedo nAChR in the absence of agonist to 4 Å resolution (13). In this structure, there is a reorientation of Segments A–C, resulting in the absence of a well defined core aromatic binding pocket.Analysis of agonist interactions with mutant nAChRs containing fluorine-substituted core aromatic residues provides evidence that cation-π interactions, particularly with αTrp149 in Segment B, are important determinants of agonist binding affinity (14) and for the higher affinity binding of nicotine to α4β2 nAChRs compared with α2βγδ nAChRs (15). Mutational analyses and molecular docking calculations have also provided evidence that two molecules of very similar structure may actually bind to a single receptor in very different orientations, as seen for two high affinity antagonists, d-tubocurarine and its quaternary ammonium analog metocurine, binding to the AChBP and to the muscle nAChR (16, 17).Photoaffinity labeling provides an alternative means to identify amino acids contributing to a drug binding site (18, 19) and has been used to determine the orientation of drugs bound in the ABS of Torpedo nAChR (20). Epibatidine binds with very high affinity (∼10 pm) to heteromeric neuronal nAChRs (e.g. α4β2) and with nanomolar affinity to α7 and muscle-type/Torpedo nAChRs (3). Utilizing a photoreactive analogue of epibatidine (azidoepibatidine; Fig. 1) and mass spectrometry, Tomizawa et al. (21) identified photolabeled amino acids in the Aplysia AChBP (Tyr195 in Segment C and Met116 in Segment E), establishing an orientation for bound azidoepibatidine consistent with the orientation of epibatidine in an AChBP crystal structure (12).Open in a separate windowFIGURE 1.Structure of [3H]epibatidine (top) and azidoepibatidine (bottom).In this report, we use [3H]epibatidine as a photoaffinity reagent to identify the amino acids photolabeled in an expressed α4β2 nAChR and in the Torpedo α2βγδ nAChR. Comparisons of the labeled amino acids seen in the Torpedo nAChR α-γ binding site and in the α4β2 nAChR, in conjunction with the results of docking calculations for epibatidine binding to homology models of the α2βγδ and α4β2 nAChRs, suggests that epibatidine binds in a single orientation in the α-γ site but in two orientations in the α4β2 ABS.  相似文献   

9.
In macrophages the α7 nicotinic acetylcholine receptor (α7nAChR) modulates production of inflammatory cytokines, cholesterol accumulation and lipoprotein uptake. Recently, our laboratory showed that selective stimulation of the α7nAChR protects macrophages from apoptosis, an effect that is absent in α7nAChR-deficient macrophages. All these observations are suggestive of a potential role of macrophage α7nAChR in atherosclerosis. Mouse models of the disease with bone marrow deletion of α7nAChR represent an attractive approach to address the in vivo relevance of these in vitro findings. However, recent studies that focused on the impact of hematopoietic deficiency of α7nAChR on early atherosclerotic lesions of low density lipoprotein receptor knockout (LDLRKO) mice, yielded controversial results. The question also remained whether macrophage α7nAChR modulates the characteristics of advanced lesions. Here we used LDLR knockout mice transplanted with bone marrow from wild-type or α7nAChR knockout animals to revisit the effect of hematopoietic deficiency of α7nAChR on early lesions and to examine, for the first time, its impact on advanced plaques. Aortic sinus atherosclerotic lesions were analyzed following 8 and 14 weeks on a high fat diet. Early lesions in mice with α7nAChR deficient bone marrow were not different from those in control animals. However, advanced lesions of mice with bone marrow deletion of α7nAChR exhibited reduction in size, macrophage content and cell proliferation. These studies are the first in examining the impact of hematopoietic deficiency of α7nAChR on the characteristics of advanced atherosclerotic lesions in a mouse model of the disease and provide novel evidence underscoring a potential pro-atherogenic role of macrophage α7nAChR.  相似文献   

10.
The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant nAChR type in the brain, and this receptor type exists in alternate (α4β2)2α4 and (α4β2)2β2 forms, which are activated by agonists with strikingly differing efficacies. Recent breakthroughs have identified an additional operational agonist binding site in the (α4β2)2α4 nAChR that is responsible for the signature sensitivity of this receptor to activation by agonists, yet the structural mechanisms determining agonist efficacy at this receptor type are not yet fully understood. In this study, we characterized the ligand selectivity of the individual agonist sites of the (α4β2)2α4 nAChR to determine whether differences in agonist selectivity influence agonist efficacy. Applying the substituted cysteine accessibility method to individual agonist sites in concatenated (α4β2)2α4 receptors, we determined the agonist selectivity of the agonist sites of the (α4β2)2α4 receptor. We show that (a) accessibility of substituted cysteines to covalent modification by methanesulfonate reagent depends on the agonist site at which the modification occurs and (b) that agonists such as sazetidine-A and TC-2559 are excluded from the site at the α4/α4 interface. Given that additional binding to the agonist site in the α4/α4 interface increases acetylcholine efficacy and that agonists excluded from the agonist site at the α4/α4 interface behave as partial agonists, we conclude that the ability to engage all agonist sites in (α4β2)2α4 nAChRs is a key determinant of agonist efficacy. The findings add another level of complexity to the structural mechanisms that govern agonist efficacy in heteromeric nAChRs and related ligand-gated ion channels.  相似文献   

11.
The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.  相似文献   

12.
Alzheimer''s disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.  相似文献   

13.
With the use of surface plasmon resonance (SPR) it was shown that ws-Lynx1, a water-soluble analog of the three-finger membrane-bound protein Lynx1, that modulates the activity of brain nicotinic acetylcholine receptors (nAChRs), interacts with the acetylcholine-binding protein (AChBP) with high affinity, KD = 62 nM. This result agrees with the earlier demonstrated competition of ws-Lynx1 with radioiodinated α-bungarotoxin for binding to AChBP. For the first time it was shown that ws-Lynx1 binds to GLIC, prokaryotic Cys-loop receptor (KD = 1.3 μM). On the contrary, SPR revealed that α-cobratoxin, a three-finger protein from cobra venom, does not bind to GLIC. Obtained results indicate that SPR is a promising method for analysis of topography of ws-Lynx1 binding sites using its mutants and those of AChBP and GLIC.  相似文献   

14.
The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders.  相似文献   

15.
Three recently discovered tentacle muscles are crucial to perform patterned movements of upper tentacles of the terrestrial snail, Helix pomatia. The muscles receive central and peripheral excitatory cholinergic innervation lacking inhibitory innervation. Here, we investigate the pharmacology of acetylcholine (ACh) responses in muscles to determine the properties of the ACh receptor (AChR), the functional availability of which was assessed using isotonic contraction measurement. Using broad spectrum of nicotinic and muscarinic ligands, we provide the evidence that contractions in the muscles are attributable to the activation of nAChRs that contain the α7-like subunit. Contractions could be evoked by nicotine, carbachol, succinylchloride, TMA, the selective α7-nAChR agonist choline chloride, 3-Bromocytisine and PNU-282987, and blocked by nAChR selective antagonists such as mytolon, hexamethonium, succinylchloride, d-tubocurarine, hemicholinium, DMDA (decamethonium), methyllycaconitine, α-Bungarotoxin (αBgTx) and α-Conotoxin IMI. The specific muscarinic agonist oxotremorine and arecoline failed to elicit contractions. Based on these pharmacological properties we conclude that the Na+ and Ca2+ permeable AChRs of the flexor muscle are nicotinic receptors that contain the α7-like subunit. Immunodetection experiments confirmed the presence of α7- or α7-like AChRs in muscle cells, and α4-AChRs in nerves innervating the muscle. These results support the conclusion that the slowly desensitizing αBgTx-sensitive responses obtained from flexor muscles are produced by activation of α7- like AChRs. This is the first demonstration of postsynaptic expression and an obligatory role for a functional α7-like nAChR in the molluscan periphery.  相似文献   

16.
Chronic exposure to nicotine up-regulates high sensitivity nicotinic acetylcholine receptors (nAChRs) in the brain. This up-regulation partially underlies addiction and may also contribute to protection against Parkinson’s disease. nAChRs containing the α6 subunit (α6* nAChRs) are expressed in neurons in several brain regions, but comparatively little is known about the effect of chronic nicotine on these nAChRs. We report here that nicotine up-regulates α6* nAChRs in several mouse brain regions (substantia nigra pars compacta, ventral tegmental area, medial habenula, and superior colliculus) and in neuroblastoma 2a cells. We present evidence that a coat protein complex I (COPI)-mediated process mediates this up-regulation of α6* or α4* nAChRs but does not participate in basal trafficking. We show that α6β2β3 nAChR up-regulation is prevented by mutating a putative COPI-binding motif in the β3 subunit or by inhibiting COPI. Similarly, a COPI-dependent process is required for up-regulation of α4β2 nAChRs by chronic nicotine but not for basal trafficking. Mutation of the putative COPI-binding motif or inhibition of COPI also results in reduced normalized Förster resonance energy transfer between α6β2β3 nAChRs and εCOP subunits. The discovery that nicotine exploits a COPI-dependent process to chaperone high sensitivity nAChRs is novel and suggests that this may be a common mechanism in the up-regulation of nAChRs in response to chronic nicotine.  相似文献   

17.
We have examined the effect of temperature on the electrophysiological properties of three neuronal nicotinic acetylcholine receptor (nAChR) subtypes: the rapidly desensitizing homomeric α7 nAChR, the more slowly desensitizing heteromeric α4β2 nAChR and on α7 nAChRs containing a transmembrane mutation (L247T) that results in dramatically reduced desensitization. In all cases, the functional properties of receptors expressed in Xenopus oocytes at room temperature (RT; 21°C) were compared to those recorded at either physiological temperature (37°C) or at lower temperature (4°C). Alterations in temperature had dramatically differing effects on the amplitude of whole-cell responses detected with these three nAChR subtypes. Compared to responses at RT, the amplitude of agonist-evoked responses with α4β2 nAChRs was increased at high temperature (125±9%, n = 6, P<0.01) and reduced at low temperature (47±5%, n = 6, P<0.01), whereas the amplitude of α7 responses was reduced at high temperature (27±7%, n = 11, P<0.001) and increased at low temperatures (224±16%, n = 10, P<0.001). In contrast to the effects of temperature on α4β2 and wild type α7 nAChRs, the amplitude of α7 nAChRs containing the L247T mutation was unaffected by changes in temperature. In addition, changes in temperature had little or no effect on current amplitude when α7 nAChRs were activated by the largely non-desensitizing allosteric agonist 4BP-TQS. Despite these differing effects of temperature on the amplitude of agonist-evoked responses in different nAChRs, changes in temperature had a consistent effect on the rate of receptor desensitization on all subtypes examined. In all cases, higher temperature resulted in increased rates of desensitization. Thus, it appears that the differing effects of temperature on the amplitudes of whole-cell responses cannot be explained by temperature-induced changes in receptor desensitization rates.  相似文献   

18.
The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer’s disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7β2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands.  相似文献   

19.
The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with “orthosteric” agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically.  相似文献   

20.
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号