首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hypoglycemia, the classic inducer of glucose-related protein (GRP) synthesis, is dysmorphogenic in rodent embryos and detrimentally affects the heart. This study compares GRP induction in a target vs non-target tissue by evaluating GRP expression in hearts and fore-limb buds of mouse embryos following exposure to hypoglycemia in vitro. Gestational day 9.5 embryos were exposed to 2, 6, and 24 h of either mild (80 mg/dl glucose) or severe (40 mg/dl glucose) hypoglycemia using the method of whole-embryo culture. GRP78 increased in a dose- and time-dependent fashion in embryonic hearts exposed to either 40 mg/dl or 80 mg/dl glucose, whereas GRP94 levels increased in hearts only after 24 h of hypoglycemia. In contrast to the heart, GRP induction in fore-limb buds occurred only with GRP78 following the most severe level and duration of hypoglycemia. RT-PCR analysis demonstrated an elevation in GRP78 and GRP94 message levels in embryonic hearts following severe hypoglycemia. However, mRNA levels did not increase in response to mild hypoglycemia. Overall, these data demonstrate the preferential induction of GRPs in the heart as compared to fore-limb buds in mouse embryos exposed to hypoglycemia. Increases in GRP protein levels may be a more reliable biomarker of stress than message levels. However, both tissues and methods should be examined for enhanced biomarker sensitivity.  相似文献   

3.
目的:探讨GRP78在非小细胞肺癌和癌旁组织中的表达情况,并研究其与生物学特征及临床预后的关系 方法:收集非小细胞肺癌术后切除标本88例,及其癌旁组织20例作为对照.采用免疫组织化学方法检测GRP78的表达.结果:GRP78在非小细胞肺癌组织和癌旁组织中的表达有统计学差异.GRP78的表达与非小细胞肺癌的临床分期、分化程度有关,而与患者性别、年龄和病理类型无关.非小细胞肺癌中GRP78高表达的患者生存时间短于GRP78低表达的患者.GRP78的表达情况是影响非小细胞肺癌患者手术预后的独立危险因素.结论:非小细胞肺癌患者的GRP78的表达可能与肿瘤细胞的发生及发展有关,GRP78可以作为一个预测非小细胞肺癌患者预后的分子标志物.  相似文献   

4.
Due to the lack of known therapeutic targets for triple-negative breast cancer (TNBC), chemotherapy is the only available pharmacological treatment. Pirarubicin (tetrahydropyranyl Adriamycin, THP) is the most commonly used anthracycline chemotherapy agent. However, TNBC has a high recurrence rate after chemotherapy, and the mechanisms of chemoresistance and recurrence are not entirely understood. To study the chemoresistance mechanisms, we first screened compounds on a pirarubicin-resistant cell line (MDA-MB-231R) derived from MDA-MB-231. The drug resistance index of MDA-MB-231R cells was approximately five times higher than that of MDA-MB-231 cells. MDA-MB-231R cells have higher GRP78 and lower miR-495-3p expression levels than MDA-MB-231 cells. Transfecting MDA-MB-231R cells with a siGRP78 plasmid reduced GRP78 expression, which restored pirarubicin sensitivity. Besides, transfecting MDA-MB-231R cells with miR-495-3p mimics increased miR-495-3p expression, which also reversed pirarubicin chemoresistance. Cell counting kit-8 (CCK-8), EdU, wound healing, and Transwell assays showed that the miR-495-3p mimics also inhibited cell proliferation and migration. Based on our results, miR-495-3p mimics could down-regulate GRP78 expression via the p-AKT/mTOR signaling pathway in TNBC cells. Remarkably, chemo-resistant and chemo-sensitive TNBC tissues had opposite trends in GRP78 and miR-495-3p expressions. The lower the GRP78 and the higher the miR-495-3p expression, the better prognosis in TNBC patients. Therefore, the mechanism of pirarubicin resistance might involve the miR-495-3p/GRP78/Akt axis, which would provide a possible strategy for treating TNBC.  相似文献   

5.
n-3 polyunsaturated fatty acids exert growth-inhibitory and pro-apoptotic effects in colon cancer cells. We hypothesized that the anti-apoptotic glucose related protein of 78kDa (GRP78), originally described as a component of the unfolded protein response in endoplasmic reticulum (ER), could be a molecular target for docosahexaenoic acid (DHA) in these cells. GRP78 total and surface overexpression was previously associated with a poor prognosis in several cancers, whereas its down-regulation with decreased cancer growth in animal models. DHA treatment induced apoptosis in three colon cancer cell lines (HT-29, HCT116 and SW480), and inhibited their total and surface GRP78 expression. The cell ability to undergo DHA-induced apoptosis was inversely related to their level of GRP78 expression. The transfection of the low GRP78-expressing SW480 cells with GRP78-GFP cDNA significantly induced cell growth and inhibited the DHA-driven apoptosis, thus supporting the essential role of GRP78 in DHA pro-apoptotic effect. We suggest that pERK1/2 could be the first upstream target for DHA, and demonstrate that, downstream of GRP78, DHA may exert its proapoptotic role by augmenting the expression of the ER resident factors ERdj5 and inhibiting the phosphorylation of PKR-like ER kinase (PERK), known to be both physically associated with GRP78, and by activating caspase-4. Overall, the regulation of cellular GRP78 expression and location is suggested as a possible route through which DHA can exert pro-apoptotic and antitumoral effects in colon cancer cells.  相似文献   

6.
ABSTRACT: BACKGROUND: The most frequent and malignant brain cancer is glioblastoma multiforme (GBM). In gliomas, tumor progression and poor prognosis are associated with the tumorigenic ability of the cells. U87MG cells (wild-type p53) are known to be tumorigenic in nude mice, but T98G cells (mutant p53) are not tumorigenic. We investigated the proteomic profiling of these two cell lines in order to gain new insights into the mechanisms that may be involved in tumorigenesis. RESULTS: We found 24 differentially expressed proteins between T98G and U87MG cells. Gene Ontology supports the notion that over-representation of differentially expressed proteins is involved in glycolysis, cell migration and stress oxidative response. Among those associated with the glycolysis pathway, TPIS and LDHB are up-regulated in U87MG cells. Measurement of glucose consumption and lactate production suggests that glycolysis is more effective in U87MG cells. On the other hand, G6PD expression was 3-fold higher in T98G cells and this may indicate a shift to the pentose-phosphate pathway. Moreover, GRP78 expression was also three-fold higher in T98G than in U87MG cells. Under thapsigargin treatment both cell lines showed increased GRP78 expression and the effect of this agent was inversely correlated to cell migration. Quantitative RT-PCR and immunohistochemistry of GRP78 in patient samples indicated a higher level of expression of GRP78 in grade IV tumors compared to grade I and non-neoplastic tissues, respectively. CONCLUSIONS: Taken together, these results suggest an important role of proteins involved in key functions such as glycolysis and cell migration that may explain the difference in tumorigenic ability between these two glioma cell lines and that may be extrapolated to the differential aggressiveness of glioma tumors.  相似文献   

7.
8.
The glucose regulated proteins (GRPs) are major structural components of the endoplasmic reticulum (ER) and are involved in the import, folding, and processing of ER proteins. Expression of the glucose regulated proteins (GRP78 and GRP94) is greatly increased after cells are exposed to stress agents (including A23187 and tunicamycin) which inhibit ER function. Here, we demonstrate that three novel inhibitors of ER function, thapsigargin (which inhibits the ER Ca(2+)-ATPase), brefeldin A (an inhibitor of vesicle transport between the ER and Golgi) and AIF4-, (which inhibits trimeric G-proteins), can increase the expression of both GRP78 and 94. The common characteristic shared by activators of GRP expression is that they disrupt some function of the ER. The increased levels of GRPs may be a response to the accumulation of aberrant proteins in the ER or they may be increased in response to structural/functional damage to the ER. The increased accumulation of GRP78 mRNA after exposure of cells to either thapsigargin, brefeldin A, AIF4-, A23187, or tunicamycin can be blocked by pre-incubation in cycloheximide. In contrast, accumulation of GRPs after exposure to hypoxia was independent of cycloheximide. In addition, the protein kinase inhibitor genistein blocked the thapsigargin induced accumulation of GRP78 mRNA, whereas the protein phosphatase inhibitor okadaic acid caused increased accumulation of GRP78 mRNA. The data indicates that there are at least 2 mechanisms for induced expression of GRPs, one of which involves a phosphorylation step and requires new protein synthesis (e.g., thapsigargin, A23187) and one which is independent of both these steps (hypoxia).  相似文献   

9.
GRP78/BiP, a molecular chaperone in the endoplasmic reticulum, is induced under such adverse conditions for cell survival as glucose starvation. Induction of GRP78 has been shown to coincide with G1 cell cycle arrest, which is an important cellular defense system. In this study, we investigated involvement of GRP78 in the mechanism of growth arrest by using human epidermoid carcinoma A431 cells. Under a chemical stress condition with 2-deoxyglucose, GRP78 was induced 3–4-fold. In the stressed cells, an underglycosylated form of epidermal growth factor receptor (EGFR) was produced and the mature form was decreased. We found that the molecular chaperone GRP78 in the endoplasmic reticulum formed a stable complex with the underglycosylated EGFR but did not with the mature form. This complex formation occurred specifically under the stress conditions, and the complex was dissociated upon removal of the stress. Treatment of the GRP78-underglycosylated EGFR complex with ATP resulted in a release of the underglycosylated EGFR from GRP78, indicating that the complex could be formed through the chaperone function of GRP78. In accordance with the complex formation with endoplasmic reticulum-resident GRP78, the underglycosylated EGFR could not be translocated to the cell surface. As a result, EGF could not induce expression of cyclin D3, a G1 cyclin, in the stressed cells, whereas it did in non-stressed cells. These results indicated that, in the stressed cells, GRP78 participated in down-regulation of EGF-signaling pathway by forming a stable complex with EGFR and inhibiting EGFR translocation to the cell surface. J. Cell. Physiol. 177:282–288, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Abstract: Astrocytes exposed to hypoxia (H) or hypoxia/reoxygenation (H/R) maintain cell viability and display changes in protein biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of metabolically labeled astrocytes exposed to H showed induction of an ≈78-kDa polypeptide that demonstrated sequence identity with glucose-regulated protein (GRP) 78. Cell lysates from H/R astrocytes displayed induction of neuroprotective interleukin (IL) 6, which was present in a high-molecular-weight complex also containing GRP78, suggesting that GRP78 might be functioning as a chaperone during cellular stress consequent on H/R. Introduction of anti-sense oligonucleotide to GRP78 into astrocytes prevented expression of the protein and suppressed H/R-induced astrocyte release of IL-6 by ≈50%. These data indicate that modulation of astrocyte properties during oxygen deprivation results, in part, from intracellular glucose depletion and subsequent expression of GRP78, which sustains generation of neuroprotective IL-6 under the stress of H/R.  相似文献   

11.
12.
Glucose regulated protein 78 (GRP78) has long been recognized as a molecular chaperone in the endoplasmic reticulum (ER) and can be induced by the ER stress response. Besides its location in the ER, GRP78 has been found to be present in cell plasma membrane, cytoplasm, mitochondria, nucleus as well as cellular secretions. GRP78 is implicated in tumor cell proliferation, apoptosis resistance, immune escape, metastasis and angiogenesis, and its elevated expression usually correlates with a variety of tumor microenvironmental stresses, including hypoxia, glucose deprivation, lactic acidosis and inflammatory response. GRP78 protein acts as a centrally located sensor of stress, which feels and adapts to the alteration in the tumor microenvironment. This article reviews the potential contributions of GRP78 to the acquisition of cancer hallmarks based on intervening in stress responses caused by tumor niche alterations. The paper also introduces several potential GRP78 relevant targeted therapies.  相似文献   

13.
14.
Glucose deprivation, a pathophysiological cell condition, causes up-regulation of GRP78 and induction of etoposide resistance in human cancer cells. The induction of drug resistance can be partly explained by the fact that GRP78 can block activation of caspase-7 induced by treatment with etoposide. Therefore, downregulating GRP78 expression may be a novel strategy anticancer drug development. Based on that premise, we established a screening program for anticancer agents that exhibit preferential cytotoxic activity for etoposide-resistant cancer cells under glucose-deprived conditions. We recently isolated an active compound, AR-054, from the culture broth of Streptomyces sp., which prevents stress-induced etoposide resistance in vitro. AR-054 was identified as piericidin A, a prototypical compound, by ESI-MS analysis and various NMR spectroscopic methods. Here, we showed that piericidin A suppressed the accumulation of GRP78 protein and was also highly toxic to etoposide-resistant HT-29 cells, with IC50 values for colony formation of 6.4 and 7.7 nM under 2-deoxyglucose supplemented and glucose-deprived conditions, respectively. Interestingly, piericidin A had no effect under normal growth conditions. Therefore, we suggest that piericidin A prevents up-regulation of GRP78, and exhibits cytotoxicity in glucose-deprived HT-29 cells that are resistant to etoposide.  相似文献   

15.
16.
Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening.  相似文献   

17.
2-Alkoxy-2-propenylidene methanaminiums inhibited gluconeogenesis and stimulated glycolysis by hepatocytes isolated from 48-h-fasted rats and fasted-refed rats, respectively. The order of effectiveness of these compounds was the same as the hypoglycemic response of intact rats found in other studies, i.e., butoxy greater than propoxy greater than ethoxy derivative. Lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios were elevated whereas cellular ATP concentration was decreased by these compounds. The butoxy derivative inhibited the oxidation of [U-14C]glucose to 14CO2 but increased glucose utilization and lactate accumulation by isolated rat diaphragms. The butoxy derivative also inhibited site I reversed electron transfer and the oxidation of NAD+-linked substrates but not succinate by isolated rat liver mitochondria. Methanaminium-induced hypoglycemia in intact rats was accompanied by an increase in blood lactate concentration as well as blood beta-hydroxybutyrate to acetoacetate ratio. The hypoglycemia caused by these compounds is proposed to be due to inhibition of glucose synthesis in the liver along with increased glucose utilization in peripheral tissues, both for want of ATP as a consequence of inhibition of site I electron transfer.  相似文献   

18.
19.
Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in interferon gamma (IFN‐γ) induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly contacted with productive and IFN‐γ‐induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN‐γ‐induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN‐γ‐induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor‐2α (eIF2α) and down‐regulation of the vesicle‐associated membrane protein‐associated protein B. Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN‐γ‐induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER‐related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN‐γ‐induced persistent infection.  相似文献   

20.
Breast cancer (BC) arises commonly in women with metabolic dysfunction. The underlying mechanism by which glycemic load can exert its action on tumor metastasis is under investigated. In this study we showed that glycemic microenvironment alters the expression of three classes of proteins, VEGF and its receptors, cell to cell, and cell to extracellular matrix (ECM) adhesion proteins in MDA-MB-231 parental cells and its two metastatic variants to the bone and brain (MDA-MB-231BO and MDA-MB-231BR, respectively). Using western blotting, we showed that VEGFR2 levels were higher in these variant cells and persisted in the cells under extreme hypoglycemia. Hypoglycemia did not alter VEGFR2 expression per se but rather suppressed its posttranslational glycosylation. This was reversed rapidly upon the restoration of glucose, and cyclohexamide (CHX) treatment demonstrated that this deglycosylated VEGFR2 was not a product of de-novo protein synthesis. VEGFR2 co-receptor Neuropilin-1 was up-regulated four-fold in all MDA-MB-231 cells (parental and two variants) compared to VEGFR2 expression, and was also susceptible to glycemic changes but resistant to CHX treatment for up to 72 hrs. Hypoglycemia also resulted in a significant decrease in specific catenin, cadherin, and integrin proteins, as well as cellular proliferation and colony forming ability. However, MDA-MB-231BR cells showed a unique sensitivity to hypo/hyperglycemia in terms of morphological changes, colony formation ability, integrin β3 expression and secreted VEGF levels. In conclusion, this study can be translated clinically to provide insight into breast cancer cell responses to glycemic levels relevant for our understanding of the interaction between diabetes and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号