首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In western Uganda, the landscape surrounding Kibale National Park (KNP) contains households, trading centers, roads, fields, and forest fragments. The mosaic arrangement of these landscape features is thought to enhance human–primate interaction, leading to primate population declines and increased bi-directional disease transmission. Using a social–ecological systems research framework that captures the complexity of interaction among people, wildlife, and environment, we studied five forest fragments near KNP and conducted intensive on-the-ground mapping to identify locations of human–primate spatial overlap. Primate locations and human activities were distributed within, on the edges, and far beyond fragment borders. Analysis of shared spaces indicated that 5.5% of human space overlapped with primate spaces, while 69.5% of primate spaces overlapped with human spaces. Nearest neighbor analysis indicated that human activities were significantly spatially clustered within and around individual fragments, as were primate locations. Getis–Ord statistics revealed statistically significant “hotspots” of human activity and primate activity, but only one location where spatial overlap between humans and primates was statistically significant. Human activities associated with collecting fuelwood and other forest products were the primary drivers of human–primate overlap; however, primates also spent time outside of forest fragments in agricultural spaces. These results demonstrate that fragmented landscapes are not uniform with respect to human–primate overlap, and that the implications of human–primate interaction, such as primate population declines and possible cross-species disease transmission, are spatially aggregated.  相似文献   

2.
We recently demonstrated that capsids from three main primate lentiviral lineages appear to form via a pathway of assembly intermediates in primate cells. Retroviral capsid assembly intermediates were initially identified and characterized using a cell-free system for assembly of immature HIV-1 capsids. Because cell-free capsid assembly systems are useful tools, we are interested in developing such systems for other primate lentiviruses besides HIV-1. Here we extend previous cell-free studies by showing that Gag proteins of HIV-2, from a second primate lentiviral lineage, progress from early intermediates to late intermediates and completed capsids over time. Additionally, we demonstrate that Gag proteins of SIVagm, from a third primate lentiviral lineage, associate with the cellular factor HP68 and complete assembly in this system. Therefore, cell-free systems reproduce assembly of Gag from three main primate lentiviral lineages, and can be used to compare mechanistic features of capsid assembly of genetically divergent primate lentiviruses.  相似文献   

3.
Mouse (RAG) cells, (deficient in hypoxanthine-phosphoribosyl-transferase), and Ateles paniscus chamek primary fibroblasts were used in fusion experiments to generate somatic cell hybrids. Both parental cell lines were genetically characterized by karyological and biochemical analyses with 27 isozyme systems. These procedures were useful for monitoring primate chromosome segregation in somatic cell hybrids, for detecting chromosome rearrangements of primate chromosomes, and for identifying individual primate chromosomes. These characterizations are necessary to distinguish between different hybrid cell lines and to generate a panel for gene mapping studies. This is achieved by selecting cell lines that segregate different sets of relatively few primate isozymes and chromosomes. Conversely, we eliminated hybrid cell lines either showing: (1) rearrangements between primate and mouse chromosomes, (2) extensive rearrangements of primate chromosomes, or (3) a large number of primate biochemical markers. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Flip through The Pictorial Guide to the Living Primates1 and you will notice a striking yet generally underappreciated aspect of primate biology: primates are extremely colorful. Primate skin and pelage coloration were highlighted examples in Darwin's2 original discussions of sexual selection but, surprisingly, the topic has received little research attention since. Here we summarize the patterns of color variation observed across the primate order and examine the selective forces that might drive and maintain this aspect of primate phenotypic diversity. We discuss how primate color patterns might be adaptive for physiological function, crypsis, and communication. We also briefly summarize what is known about the genetic basis of primate pigmentation and argue that understanding the proximate mechanisms of primate coloration will be essential, not only for understanding the evolutionary forces shaping phenotypic variation, but also for clarifying primate taxonomies and conservation priorities.  相似文献   

5.
The large human populations in cities are an important source of demand for wildlife pets, including primates, and not much is known about the primate species involved in terms of their general origin, the length of time they are kept as pets, and some of the maintenance problems encountered with their use as pets. We report the results of a survey conducted in Mexico City among primate pet owners, which was aimed at providing some of the above information. We used an ethnographic approach, and pet owners were treated as informants to gain their trust so that we could enter their homes and learn about the life of their primate pets. We surveyed 179 owners of primate pets, which included 12 primate species. Of these, three were native species (Ateles geoffroyi, Alouatta pigra, and A. palliata). The rest were other neotropical primate species not native to Mexico, and some paleotropical species. Spider monkeys and two species of howler monkeys native to Mexico accounted for 67% and 15%, respectively, of the primate cases investigated. The most expensive primate pets were those imported from abroad, while the least expensive were the Mexican species. About 45% of the native primate pets were obtained by their owners in a large market in Mexico City, and the rest were obtained in southern Mexico. Although they can provide companionship for children and adults, primate pets are subject to a number of hazards, some of which put their lives at risk. The demand by city dwellers for primate pets, along with habitat destruction and fragmentation, exerts a significant pressure on wild populations in southern Mexico.  相似文献   

6.
Species-area relationships predict that there is a positive relationship between the number of species and the size of an area. It has been suggested that species richness will covary with area because larger areas have a greater diversity of habitats. Moreover, habitat diversity may operate in conjunction with riverine barriers to influence primate biogeography. Few studies have determined if and how these hypotheses relate to primate diversity in Guyana. To test these biogeographic hypotheses, I used data from 1,725 km of primate surveys I conducted in Guyana. I estimated geographic ranges for each of the 8 primate species via a GIS system. Geographic range size is a major determinant of the number of sightings of the 8 primate species. Primate species diversity is strongly negatively correlated with the number of rivers crossed moving in a clockwise pattern from eastern to NW Guyana. Interfluvial and habitat areas influence primate species diversity in Guyana. However, my data on primate biogeography in Guyana do not support the hypothesis that habitat diversity within the interfluvial areas effects primate diversity. Although the species-area relationship is considered the closest thing to a rule in ecology, researchers should be wary of too readily applying and accepting the model at all scales in biogeographic studies.  相似文献   

7.
This special issue on nonhuman primate behavior and welfare, the proceedings of a special Animal Behavior Society session, celebrates the life of Dr. Sylvia Taylor (1963-2005). Sylvia's premature death reminded her friends to recognize the reality that life is short, but one can make the most of it. Many individuals and organizations have also recognized the reality that an educational venture such as this one requires adequate funding and support. Their generosity has made this undertaking a success. The idea behind the session was to recognize the reality that one cannot ensure nonhuman animal welfare without understanding animal behavior, and to explore the ways in which this principle applies to primates. One must also recognize the reality that nonhuman primate welfare depends on understanding the behavior of the human primate as well as the nonhuman primate. Ensuring the welfare of the nonhuman primate sometimes requires educating and motivating the human primate. This special issue will hopefully provide helpful information to increase the reader's knowledge of primate behavior and welfare and to help the reader educate others on these important topics.  相似文献   

8.
In these postgenomic times where aspects of functional genetics and character evolution form a focal point of human-mouse comparative research, primate phylogenetic research gained a widespread interest in evolutionary biology. Nevertheless, it also remains a controversial subject. Despite the surge in available primate sequences and corresponding phylogenetic interpretations, primate origins as well as several branching events in primate divergence are far from settled. The analysis of SINEs - short interspersed elements - as molecular cladistic markers represents a particularly interesting complement to sequence data. The following summarizes and discusses potential applications of this new approach in molecular phylogeny and outlines main results obtained with SINEs in the context of primate evolutionary research. Another molecular cladistic marker linking the tarsier with the anthropoid primates is also presented. This eliminates any possibility of confounding phylogenetic interpretations through lineage sorting phenomena and makes use of a new point of view in settling the phylogenetic relationships of the primate infraorders.  相似文献   

9.
10.
This special issue on nonhuman primate behavior and welfare, the proceedings of a special Animal Behavior Society session, celebrates the life of Dr. Sylvia Taylor (1963-2005). Sylvia's premature death reminded her friends to recognize the reality that life is short, but one can make the most of it. Many individuals and organizations have also recognized the reality that an educational venture such as this one requires adequate funding and support. Their generosity has made this undertaking a success. The idea behind the session was to recognize the reality that one cannot ensure nonhuman animal welfare without understanding animal behavior, and to explore the ways in which this principle applies to primates. One must also recognize the reality that nonhuman primate welfare depends on understanding the behavior of the human primate as well as the nonhuman primate. Ensuring the welfare of the nonhuman primate sometimes requires educating and motivating the human primate. This special issue will hopefully provide helpful information to increase the reader's knowledge of primate behavior and welfare and to help the reader educate others on these important topics.  相似文献   

11.
Anthropoid primates are well known for their highly sexually dimorphic canine teeth, with males possessing canines that are up to 400% taller than those of females. Primate canine dimorphism has been extensively documented, with a consensus that large male primate canines serve as weapons for intrasexual competition, and some evidence that large female canines in some species may likewise function as weapons. However, apart from speculation that very tall male canines may be relatively weak and that seed predators have strong canines, the functional significance of primate canine shape has not been explored. Because carnivore canine shape and size are associated with killing style, this group provides a useful comparative baseline for primates. We evaluate primate maxillary canine tooth size, shape and relative bending strength against body size, skull size, and behavioral and demographic measures of male competition and sexual selection, and compare them to those of carnivores. We demonstrate that, relative to skull length and body mass, primate male canines are on average as large as or larger than those of similar sized carnivores. The range of primate female canine sizes embraces that of carnivores. Male and female primate canines are generally as strong as or stronger than those of carnivores. Although we find that seed-eating primates have relatively strong canines, we find no clear relationship between male primate canine strength and demographic or behavioral estimates of male competition or sexual selection, in spite of a strong relationship between these measures and canine crown height. This suggests either that most primate canines are selected to be very strong regardless of variation in behavior, or that primate canine shape is inherently strong enough to accommodate changes in crown height without compromising canine function.  相似文献   

12.
13.
There is growing evidence that some species of wild nonhuman primate, especially chimpanzees, take herbal and clay medicines to treat and prevent disease. Such a primate pharmacopoeia may be a missing link in our understanding of the relationship between primate foraging and ranging strategies and plant chemistry; not all plant secondary compounds may be deleterious to the consumer. Just as study of traditional herbal medicines has yielded powerful drugs, so primate medicines may hint at drugs useful in treating human disease.  相似文献   

14.
Many species across a range of primate genera, irrespective of dietary and locomotory specializations, can and will incorporate agricultural crops in their diets. However, although there is little doubt that rapid, extensive conversion of natural habitats to agricultural areas is significantly impacting primate populations, primate crop foraging behaviors cannot be understood solely in terms of animals shifting to cultivated crops to compensate for reduced wild food availability. To understand fully why, how, and when primates might incorporate crops in their dietary repertoire, we need to examine primate crop foraging behavior in the context of their feeding strategies and nutritional ecology. Here I briefly outline current debates about the use of terms such as human–wildlife conflict and crop raiding and why they are misleading, summarize current knowledge about primate crop foraging behavior, and highlight some key areas for future research to support human–primate coexistence in an increasingly anthropogenic world.  相似文献   

15.
In the decade since the first draft of the human genome was announced, genome sequencing projects have been initiated for an additional twenty-some primate species. Within the next several years, genome sequence data will likely become available for all primate genera and for most individuals within some primate populations. At the same time, gene mapping and association studies of humans and other organisms are rapidly advancing our understanding of the genetic bases of behavioral and morphological traits. Primatologists are especially well-placed to take advantage of this coming flood of genetic data. Here we discuss what this new era of primate genomics means for field primatology and highlight some of the unprecedented opportunities it will afford, particularly with regard to examining the genetic basis of primate adaptation and diversity.  相似文献   

16.
Cattle are the only non-primate species for which expansion of the killer cell immunoglobulin-like receptor (KIR) genes has been reported. We analyzed cattle KIR sequences to determine their relationship to the two divergent lineages of primate KIR: one comprising the KIR3DX1 gene of unknown function, the second comprising all other primate KIR genes, which encode variable major histocompatibility complex class I receptors. Phylogenetics and analysis of repetitive elements shows that cattle KIR subdivide into the same two lineages as primate KIR. Unlike the primates, the lineage of variable and likely functional cattle KIR corresponds to the KIR3DX1 lineage of primate KIR, whereas the variable lineage of primate KIR is represented in cattle by one KIR gene and a related gene fragment.  相似文献   

17.
The world's primates have been severely impacted in diverse and profound ways by anthropogenic pressures. Here, we evaluate the impact of various infrastructures and human-modified landscapes on spatial patterns of primate species richness, at both global and regional scales. We overlaid the International Union for the Conservation of Nature (IUCN) range maps of 520 primate species and applied a global 100 km2 grid. We used structural equation modeling and simultaneous autoregressive models to evaluate direct and indirect effects of six human-altered landscapes variables (i.e., human footprint [HFP], croplands [CROP], road density [ROAD], pasture lands [PAST], protected areas [PAs], and Indigenous Peoples' lands [IPLs]) on global primate species richness, threatened and non-threatened species, as well as on species with decreasing and non-decreasing populations. Two-thirds of all primate species are classified as threatened (i.e., Critically Endangered, Endangered, and Vulnerable), with ~86% experiencing population declines, and ~84% impacted by domestic or international trade. We found that the expansion of PAST, HFP, CROP, and road infrastructure had the most direct negative effects on primate richness. In contrast, forested habitat within IPLs and PAs was positively associated in safeguarding primate species diversity globally, with an even stronger effect at the regional level. Our results show that IPLs and PAs play a critical role in primate species conservation, helping to prevent their extinction; in contrast, HFP growth and expansion has a dramatically negative effect on primate species worldwide. Our findings support predictions that the continued negative impact of anthropogenic pressures on natural habitats may lead to a significant decline in global primate species richness, and likely, species extirpations. We advocate for stronger national and international policy frameworks promoting alternative/sustainable livelihoods and reducing persistent anthropogenic pressures to help mitigate the extinction risk of the world's primate species.  相似文献   

18.

Background  

Complete exome resequencing has the power to greatly expand our understanding of non-human primate genomes. This includes both a better appreciation of the variation that exists in non-human primate model species, but also an improved annotation of their genomes. By developing an understanding of the variation between individuals, non-human primate models of human disease can be better developed. This effort is hindered largely by the lack of comprehensive information on specific non-human primate genetic variation and the costs of generating these data. If the tools that have been developed in humans for complete exome resequencing can be applied to closely related non-human primate species, then these difficulties can be circumvented.  相似文献   

19.
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.  相似文献   

20.
Field studies of wild nonhuman primates have grown exponentially over the past 40 years and our knowledge of primate behavior, ecology, and social, and mating systems has expanded greatly. However, we are facing a major extinction crisis with some 60% of all primate species listed as threatened and more than 75% of species with declining populations. The primary factor driving primate population decline is human population increase, which over the past 50 years has resulted in the unsustainable conversion and degradation of natural landscapes for industrial agriculture, the production of nonagricultural commodities for international trade, pastureland for cattle, dam construction, fossil fuel exploration, mining, and the construction of road networks and infrastructure to support large urban centers. Recent ecological modeling predicts that by the end of the century, the four primate‐richest countries in the world will lose 32–78% of their existing primate habitat to agricultural expansion, and nine of the top 15 primate‐richest countries are expected to have 80–100% of their primate species extinct or threatened with extinction. If we are going to save the world's primates, the time to act is now! Not only should all primate field research include a strong conservation component, but in addition we must actively join with our professional societies, zoos and research facilities, universities, conservation organizations, concerned business leaders, global citizens, like‐minded political leaders, and grassroots organizations to inform, demand and direct governments, multinational corporations, and international organizations to engage in transformational change to protect biodiversity and seek environmental justice against those entities that actively destroy our planet. As the chief academic discipline dedicated to the study of primates, we must organize and collectively move from being advocates for primate conservation to becoming activists for primate conservation. This is a call to action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号