首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Recent theoretical advances in food web ecology emphasize the importance of body size disparities among species for the structure, stability and functions of ecosystems. Experimental confirmations of the functional importance of large species, independent of their trophic position, are scarce. We specifically examine the multiple ecological roles of large invertebrates from two distinct trophic levels in headwater streams. We experimentally manipulated the presence of large predatory invertebrates (two Perlid stoneflies) or detritivores (a limnephilid caddisfly and a Pteronarcys stonefly) in a two‐by‐two design in stream channels open to immigration/emigration of smaller biota. We assessed treatment effects on the trophic structure of the benthic invertebrate community, dynamics of basal resources (benthic algae and leaf litter of cedar and alder), and stability of litter decomposition rates against an experimental pulse perturbation (fine sediment input). The presence of the large invertebrates was associated with a ten‐fold decrease in the biomass of invertebrate filterers whereas other trophic groups were unaffected by the large species. The biomass of benthic algae was lower and the rate of mass loss of alder litter was higher in channels lacking the large predators, thus revealing trophic cascades operating along both algal‐based and detritus‐based food chains. The large predators had no detectable effect on the decomposition of cedar whereas both cedar and alder disappeared faster in the presence of the large detritivores. Furthermore, the large predators and large detritivores interactively influenced the decomposition of the cedar–alder mixture through a litter diversity effect and the variability of the rate of alder decomposition after a pulse of fine sediment. Because the large invertebrates affected multiple ecosystem properties, and as their absence was not rapidly compensated for by small immigrant species, our findings support the notion that large species could be critically important in controlling ecosystem structure and functioning.  相似文献   

2.
The importance of fungi in the trophic biology of the freshwater detritivores Gammarus pulex and Asellus aquaticus was investigated. Inspection of leaves used in feeding trials indicated that whereas A. aquaticus scrapes at the leaf surface, G. pulex bites through the leaf material. Both species discriminated between fungal mycelia, fungally colonized and uncolonized leaf material but, although A. aquaticus selectively consumed fungal mycelia, G. pulex fed preferentially on leaf material. Fungi appear to be an important food source for A. aquaticus and selection of food material was positively correlated with fungal biomass. In contrast, for G. pulex, fungi appear to be more important as modifiers of leaf material. However, no significant correlations were found between food preference and any of the leaf modifications measured.  相似文献   

3.
1. Three species of leeches, Erpobdella octoculata, Glossiphonia complanata and Helobdella stagnalis, and four species of triclads, Polycelis nigra, P. tennis, Dugesia polychroa and Dendrocoelum lacteum, commonly coexist on stony shores in productive British lakes. All species are food limited and there is much overlap in their diet. For both leech and triclad communities, coexistence of species is through the occurrence of food refuges. Leeches are more successful than triclads at capturing live prey, whereas both groups feed on damaged prey, comprising incapacitated, live or dead animals that are leaking body fluids. If triclads are better than leeches at exploiting damaged prey, this could be a mechanism for their coexistence. 2. Laboratory experiments investigated the comparative speeds at which leeches and triclads responded to crushed prey. Young and adult predators were offered a crushed specimen of the oligochaete Tubifex tubifex, the snail Lymnaea peregra, the crustacean Asellus aquaticus or the chironomid Chironomus sp., and their reaction times recorded. These four prey groups constitute the main diet of the predators in the field. Only D. polychroa and D. lacteum showed a significantly different reaction time between young and adults to crushed prey, and the reason for this is unclear. All predators, except H. stagnalis and D. polychroa, showed a difference in reaction time to the four types of prey, presumably a consequence of differences in both the ‘quality’ and ‘concentration’ of the different prey fluids, and there were some differences between predators in their speed of reaction to the same prey type. The following sequence, from fastest to slowest, in general reaction time to prey was obtained: E. octoculata, D. polychroa, P. tenuis, D. lacteum, P. nigra, H. stagnalis and G. complanata. 3. The location of the damaged food by the predators can be explained partly in terms of their foraging behaviour, with E. octoculata, D, polychroa and P. tenuis exhibiting a more seek-out strategy than other species which have a more sit-and-wait behaviour, and partly on the level of sophistication of their chemosensory system used to detect leaked prey fluids. This system is highly developed in triclad species but poorly developed in leeches. 4. In a second type of experiment in which prey, L. peregra, A. aquaticus or Chironomus sp., were offered at different time intervals after crushing to H, stagnalis and P. tenuis, few predators fed on food crushed for 24 h or longer, although a few leeches fed on Chironomus crushed for up to 72 h. 5. It is concluded that coexistence of leech and triclad species on stony shores in lakes is assisted by partitioning of food on a damaged or live basis.  相似文献   

4.
Studies of diet choice by omnivores have the potential to form conceptual links between studies of diet choice by herbivores, frugivores, detritivores, and predators. We examined diet choice in the omnivorous salt marsh crab Armases cinereum (=Sesarma cinereum (Grapsidae)) in a series of laboratory experiments. Armases is sexually dimorphic, with larger males having relatively larger claws than females. In a growth experiment, an invertebrate diet supported better growth than any other single diet; however, growth also occurred on single diets of mud, leaf litter or fresh leaves. Mixed diets provided the best growth. If alternative foods were available, consumption of leaf litter and fresh leaves decreased, but these items were not dropped from the diet completely. In contrast, consumption of invertebrate prey was not affected by the availability of alternative foods. In a predation experiment, crustacean prey (an amphipod and an isopod) were more vulnerable to predation by Armases than were two small gastropod species. Only large male Armases were able to consume large numbers of gastropods. Environmental structure (plant litter or litter mimics) reduced predation rates, especially on crustaceans, which actively utilized the structure to hide from predators. Armases consumes a mixed diet because several factors (prey physical defenses, avoidance behavior of prey, growth benefits of a mixed diet) favor omnivory over a specialized diet. Similar factors may promote minor amounts of “omnivory” by species generally considered to be herbivores, frugivores, detritivores, and predators.  相似文献   

5.
1. Interest in the effects of biodiversity on ecosystem processes is increasing, stimulated by the global species decline. Different hypotheses about the biodiversity‐ecosystem functioning (BEF) relationship have been put forward and various underlying mechanisms proposed for different ecosystems. 2. We investigated BEF relationships and the role of species interactions in laboratory experiments focussing on aquatic decomposition. Species richness at three different trophic levels (leaf detritus, detritus‐colonising fungi and invertebrate detritivores) was manipulated, and its effects on leaf mass loss and fungal growth were assessed in two experiments. In the first, monocultures and mixtures of reed (Phragmites australis), alder (Alnus glutinosa) and oak (Quercus cerris) leaf disks were incubated with zero, one or eight fungal species. Leaf mixtures were also incubated with combinations of three and five fungal species. In the second experiment, reed leaf disks were incubated with all eight fungal species and offered to combinations of one, two, three, four or five macroinvertebrate detritivores with different feeding modes. 3. Results from the first experiment showed that leaf mass loss was directly related to fungal mass and varied unimodally with the number of fungi, with a maximum rate attained at intermediate diversity in oak and reed and at maximum diversity in alder (the fastest decomposing leaf). 4. Mixing litter species stimulated fungal growth but interactions between species of fungi slowed down decomposition. In contrast, mixtures of macroinvertebrate detritivores reduced fungal mass and accelerated leaf decomposition. Possible explanations of the positive relationship between detritivore diversity and decomposition are a reduction in fungal dominance and a differentiation in the use of different resource patches promoted by higher fungal diversity. 5. In conclusion, the results show a general increase in decomposition rate with increasing biodiversity that is controlled by within‐ and between‐trophic level interactions, and support the hypothesis of both bottom‐up and top‐down effects of diversity on this process.  相似文献   

6.
Summary 1. To examine spatial heterogeneity of trophic pathways on a small scale (<5 m diameter), we conducted dual stable isotope (δ13C and δ15N) analyses of invertebrate communities and their potential food sources in three patchy habitats [sphagnum lawn (SL), vascular‐plant carpet (VC) and sphagnum carpet] within a temperate bog (Mizorogaike Pond, Kyoto, Japan). 2. In total, 19 invertebrate taxa were collected from the three habitats, most of which were stenotopic, i.e. collected from a single habitat. Amongst the habitats, significant variation was observed in the isotopic signatures of dominant plant tissues and their detrital matter [benthic particulate organic matter (BPOM)], both of which were potential organic food sources for invertebrates. Site‐specific isotopic variation amongst detritivores was found in δ13C but not in δ15N, reflecting site‐specificity in the isotopic signatures of basal foods. The eurytopic hydrophilid beetle Helochares striatus was found in all habitats, but showed clear site variation in its isotopic signatures, suggesting that it strongly relies on foods within its own habitat. 3. The most promising potential foods for detritivores were the dead leaf stalks of a dominant plant in the VC and BPOM in the SL and carpet. An isotopic mixing model (IsoSource version 1.3.1) estimated that aquatic predators rely on unknown trophic sources with higher δ13C than detritus, whereas terrestrial predators forage on allochthonous as well as autochthonous prey, suggesting that the latter predators might play key roles in coupling between habitats. 4. Our stable isotope approach revealed that immobile detritivores are confined to their small patchy habitats but that heterogeneous trophic pathways can be coupled by mobile predators, stressing the importance of habitat heterogeneity and predator coupling in characterising food webs in bog ecosystems.  相似文献   

7.
Martin  A. J.  Seaby  R. M. H.  Young  J. O. 《Hydrobiologia》1994,273(2):67-75
The effect of predator and prey body size on the feeding success of the British lake-dwelling leeches Glossiphonia complanata and Helobdella stagnalis was examined in the laboratory, and any involvement of size difference between the leeches in allowing coexistence in the field assessed. G. complanata breeds in advance of H. stagnalis and maintains a body size advantage throughout their annual life-cycle. In experiments, conducted at 14 °C and a photoperiod of 16 hrs L: 8 hrs D, three size classes of leeches of each species were each exposed to each of three size classes of each of five prey species, viz. Tubifex sp., Chironomus sp., Asellus aquaticus, Lymnaea peregra and Potamopyrgus jenkinsi. For each prey species, three different types of experiments were performed: one leech exposed to four prey individuals; four leeches of the same species with sixteen prey; and two leeches of each species with sixteen prey. In the first experiment, all sizes of G. complanata were capable of feeding on all sizes of the prey types offered; the same was true for H. stagnalis with exceptions of feeding on large A. aquaticus and large L. peregra. For both species, but especially for G. complanata, there was a trend within each size class of leech for decreasing proportions of fed leeches with increasing prey size, and within each size class of prey for an increasing proportion of fed leeches with increasing leech size; however there were several exceptions to these trends. Both leeches fed extensively on Tubifex sp. but there were significant differences in the proportions feeding on other prey types; G. complanata fed more on A. aquaticus and the two snail species, and less on Chironomus, than H. stagnalis. The effect of increasing the number of leech individuals from one to four individuals, of the same or mixed species, had little effect on the proportion of leeches which had fed. It is concluded that large G. complanata will have access to large individuals of certain prey taxa denied H. stagnalis, which may lessen the intensity of interspecific competition.  相似文献   

8.
Ali Arab  Gina M. Wimp 《Oecologia》2013,173(2):331-341
While numerous studies have examined the effects of increased primary production on higher trophic levels, most studies have focused primarily on the grazing food web and have not considered the importance of alternate prey channels. This has happened despite the fact that fertilization not only increases grazing herbivore abundance, but other types of consumers such as detritivores that serve as alternate prey for generalist predators. Alternate prey channels can sustain generalist predators at times when prey abundance in the grazing food web is low, thus increasing predator densities and the potential for trophic cascades. Using arthropod data from a fertilization experiment, we constructed a hierarchical Bayesian model to examine the direct and indirect effects of plant production and alternate prey channels on predators in a salt marsh. We found that increased plant production positively affected the density of top predators via effects on lower trophic level herbivores and mesopredators. Additionally, while the abundance of algivores and detritivores positively affected mesopredators and top predators, respectively, the effects of alternate prey were relatively weak. Because previous studies in the same system have found that mesopredators and top predators rely on alternate prey such as algivores and detritivores, future studies should examine whether fertilization shifts patterns of prey use by predators from alternate channels to the grazing channel. Finally, the hierarchical Bayesian model used in this study provided a useful method for exploring trophic relationships in the salt marsh food web, especially where causal relationships among trophic groups were unknown.  相似文献   

9.
The non-consumptive effects of predators on prey can affect prey phenotypes, potentially having important consequences for communities due to trait-mediated indirect interactions. Predicting non-consumptive effects and their impacts on communities can be difficult because predators can affect resources directly through nutrient cycling and indirectly by altering prey resource use, which can lead to complex interactions among resources and consumers. In this study we examined the effects of caged dragonfly predators on aquatic resources in the presence and absence of two focal herbivores, the tadpoles of Neotropical tree frogs Agalychnis callidryas and Dendropsophus ebraccatus. We crossed the presence/absence of caged dragonflies with four tadpole treatments: no tadpoles, each tadpole species alone, and both species together to examine interactions among tadpole composition, predator presence, and time on tadpole growth, resources, and zooplankton abundances. Predator effects on growth changed through ontogeny and was species-dependent. Predators initially reduced then dramatically increased A. callidryas growth, but had no effect on D. ebraccatus. Predators also increased the abundances of both periphyton and phytoplankton. However, there was no evidence of a trait-mediated trophic cascade (i.e., tadpole by predator interaction). Instead, nutrients from prey carcass subsidies likely played an increasingly important role in facilitating resources, and shaping tadpole growth, competitive interactions, and zooplankton abundances through time. In nutrient-poor aquatic systems the release of nutrients via the consumption of terrestrially derived prey items by aquatic predators may have important impacts on food webs by facilitating resources independent of the role of trait-mediated trophic cascades.  相似文献   

10.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

11.
During past decades, several mechanisms such as resource quality and habitat complexity have been proposed to explain variations in the strength of trophic cascades across ecosystems. In detritus-based headwater streams, litter accumulations constitute both a habitat and a resource for detritivorous macroinvertebrates. Because litter edibility (which promotes trophic cascades) is usually inversely correlated with its structural complexity (which weakens trophic cascades), there is a great scope for stronger trophic cascades in litter accumulations that are dominated by easily degradable litter species. However, it remains unclear how mixing contrasting litter species (conferring both habitat complexity and high quality resource) may influence top–down controls on communities and processes. In enclosures exposed in a second-order stream, we manipulated litter species composition by using two contrasting litter (alder and oak), and the presence–absence of a macroinvertebrate predator (Cordulegaster boltonii larvae), enabling it to effectively exert predation pressure, or not, on detritivores (consumptive versus non-consumptive predation effects). Leaf mass loss, detritivore biomass and community structure were mostly controlled independently by litter identity and mixing and by predator consumption. However, the strength of predator control was mediated by litter quality (stronger on alder), and to a lesser extent by litter mixing (weaker on mixed litter). Refractory litter such as oak leaves may contribute to the structural complexity of the habitat for stream macroinvertebrates, allowing the maintenance of detritivore communities even when strong predation pressure occurs. We suggest that considering the interaction between top–down and bottom–up factors is important when investigating their influence on natural communities and ecosystem processes in detritus-based ecosystems.  相似文献   

12.
Information on the ecology and feeding behaviour of the large oceanic predatory fishes is crucial for the ecosystem approaches to fisheries management models. Co-existing large pelagic predators in the open oceans may avoid competition for the limited forage by resource partitioning on spatial, temporal or trophic levels. To test this, we studied the prey species composition, diet overlap, trophic level, and trophic organisation of 12 large predatory fishes co-existing in the eastern Arabian Sea. Stomach contents of 1,518 specimens caught by exploratory longline operations in the Indian Exclusive Economic Zone during the years 2006–2009 were analysed. Finfishes were dominant prey of all species except blue marlin (Makaira nigricans) and yellowfin tuna (Thunnus albacares), which fed mainly on cephalopods, and long-snouted lancetfish (Alepisaurus ferox) and pelagic stingray (Pteroplatytrygon violacea), which fed mainly on crustaceans. Common dolphinfish (Coryphaena hippurus) and yellowfin tuna fed on a wider variety of prey than the other species, while the diets of lancetfish and black marlin (Istiompax indica) were narrowest. Pelagic stingray and great barracuda (Sphyraena barracuda) fed on species occupying epipelagic waters, whereas the contribution of mesopelagic prey was higher in the diets of swordfish (Xiphias gladius) and pelagic thresher (Alopias pelagicus). Trophic levels of these fishes ranged from 4.13 to 4.37. Diet overlap index revealed that some of the large pelagic predatory fishes share common prey species. Cluster analysis of the diets revealed four distinct trophic guilds namely ‘flyingfish feeders’ (common dolphinfish and great barracuda); ‘mesopelagic predators’ (pelagic thresher and swordfish); ‘crab feeders’ (lancetfish, pelagic stingray and silky shark) and ‘squid feeders’ (yellowfin tuna, Indo-Pacific sailfish (Istiophorus platypterus), skipjack tuna (Katsuwonus pelamis), black marlin and blue marlin). Large predatory fishes of the eastern Arabian Sea target different prey types, and limit their vertical extent and time of feeding to avoid competing for prey.  相似文献   

13.
Comparing the relationship between resource use and resource availability (i.e. the functional response, FR) between two predators can provide useful insights on their relative predatory impacts. For instance in invasion ecology, an increase in the predation pressure on local prey populations can be predicted from a significant difference in FR revealing a higher FR for the invasive predator compared to the native trophic analogue it may replace. In traditional FR experiments, the focal prey species is the only source of food. This may lead to misinterpretations with opportunistic omnivores that are able to cope with different resource availabilities in their natural environment, and whose predation rate may therefore be modulated by the presence of alternative resources. To address this question, we compared the FR of two freshwater gammarid species known to behave as opportunistic omnivores: the invasive “killer shrimp” Dikerogammarus villosus and the native Gammarus pulex, in a treatment with a focal prey species as the only food source (the water flea Daphnia magna) and in a treatment with the focal prey and an alternative food source (Carpinus betulus leaves). D. villosus showed a significantly higher FR than G. pulex with water fleas only and providing leaf litter suppressed this difference. The predatory impact of D. villosus might therefore be modulated by the relative availability of live prey compared to the alternative food sources. Increasing the realism of FR experiments through the inclusion of abundant and easily accessible alternative resources, like leaf litter for benthic invertebrates, should refine the predictions made from FR comparisons.  相似文献   

14.
The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ13C and δ15N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.  相似文献   

15.
Studies on trophic interactions permits the use of community-wide network analyses to evaluate the consequences of human interventions in natural communities. In this paper, we aimed to get insights into the underlying mechanism of prey selection for four piscivorous species, and evaluate behavioral responses to prey selection after an impoundment. We assemble six food web models to search for the hypothesis that best predict observed prey selection pattern of piscivorous fishes combining the following assumptions: (i) predation window, defined as the size range of prey species consumed by a piscivorous fish; (ii) prey strategies to avoid predation (iii) and prey abundance. We tested the probability of each hypothesis to reproduce two empirical data, one before and one after an impoundment with minimum assumptions. Before impoundment, we found that predators presented switching behavior, preying preferably on abundant prey; while after impoundment, predators consumed prey within its predation window. Those results explained better than the null hypotesis and all other assumptions; and corroborate with both theoretical and empirical studies. We conclude that different assumptions drives piscivorous fish behavior in different environments; and modelling procedures can be used to assess gaps in trophic interactions of fish communities.  相似文献   

16.
Organic sediments in freshwaters are regularly subject to low concentrations of oxygen. The ability of detritivores to sustain their feeding in such conditions should therefore be of importance for the decomposition process. In the present study, aquaria were used to determine processing rates of five lake-dwelling shredders at three different oxygen concentrations; normoxic (9 mg O2 l–1) and two levels of hypoxia (1 and 2 mg O2 l–1). Discs of alder leaves (Alnus glutinosa (L.)) were used as food. Four species of caddisfly larvae (Trichoptera Limnephilidae) and the isopod, Asellus aquaticus (L.) were compared in the experiments. Significant differences in processing rates per g animal biomass were found both at normoxia and 2 mg oxygen l–1. At l mg O2 l–1 none of the invertebrates fed on leaf discs. The caddisfly larvae Halesus radiatus (Curtis), being one of the two most efficient shredders at normoxia, did not feed at 2 mg oxygen l–1. The other species fed at rates 15–50 of that at normoxia. The least efficient shredder at normoxia, A. aquaticus was similar to two of the trichopterans at 2 mg O2 l–1. This study shows that the importance of specific shredder species may shift in case of hypoxia. Species-specific traits regarding oxygen sensitivity may also be influential for distribution patterns of shredder species both within and between lakes.  相似文献   

17.
SUMMARY.
  • 1 The ratio: number of predator species/number of prey species is reviewed using comprehensive faunal lists for a range of freshwater habitats in Britain and North America. Prey species are defined as detritivores, herbivores and fungivores; predators eat metazoan animals as the main component of their diet. Our data refer only to invertebrates.
  • 2 The numbers of predators and prey species are apparently very closely correlated in freshwater communities (r=0.84, In transformed data), with an average ratio of predators to prey of 0.36. The average ratio of predators to prey changes from 0.48 in small (species-poor) collections to 0.29 in large (species-rich) collections.
  • 3 We suggest that an approximately constant ratio of predators to prey may be generated by: (a) the number of predator species being a function of the number of broad classes or kinds of prey; and (b) the number of prey species being constrained by competition between prey for ‘enemy free space’, i.e. species that are too similar are unable to coexist with shared predators.
  相似文献   

18.
Analysis of resource partitioning between larvae of three Anisopteran species showed that Aeshna cyanea and Anax imperator (both Aeshnidae) tended to occupy similar ecological niches which were not shared by Libellula depressa (Libellulidae).The diets of these predators and comparisons between trophic availability and diets indicated that prey species eaten varied according to season and predator species, and that some selection of prey species occurred.  相似文献   

19.
Habitat structure alters top-down control in litter communities   总被引:1,自引:0,他引:1  
The question whether top-down or bottom-up forces dominate trophic relationships, energy flow, and abundances within food webs has fuelled much ecological research with particular focus on soil litter ecosystems. Because litter simultaneously provides habitat structure and a basal resource, disentangling direct trophic and indirect non-trophic effects on different trophic levels remains challenging. Here, we focussed on short-term per capita interaction strengths of generalist predators (centipedes) on their microbi-detritivore prey (springtails) and addressed how the habitat structuring effects of the leaf litter modifies this interaction. We performed a series of laboratory functional response experiments where four levels of habitat structure were constructed by adding different amounts of leaf litter to the experimental arenas. We found that increased leaf litter reduced the consumption rate of the predator. We interpreted this as a dilution effect of the augmented habitat size provided by the increasing leaf litter surface available to the species. Dilution of the prey population decreased encounter rates, whereas the capture success was not affected. Interestingly, our results imply that top-down control by centipedes decreased with increasing resource supply for the microbi-detritivore prey (i.e. the leaf litter that simultaneously provides habitat structure). Therefore, effective top-down control of predators on microbi-detritvore populations seems unlikely in litter-rich ecosystems due to the non-trophic, habitat-structuring effect of the basal litter resource.  相似文献   

20.
Body size of consumer species is a fundamental trait that influences the trophic ecology of individuals and their contribution to the functioning of freshwater ecosystems. However, the relationship between body size and trophic ecology can be highly variable both within and between closely-related and similarly-sized species. In this study we compared the intra- and interspecific relationship between body size and trophic position for North American Yellow Perch Perca flavescens and European Perch Perca fluviatilis, which share similarities in morphology, life history traits and trophic requirements. We used stable isotope ratios (δ15N and δ13C) to characterize differences in size-dependency of trophic position and to trace consumer foraging history of Yellow Perch in lakes in the Northwestern United States and European Perch in lakes in Germany. The trophic position and stable isotope ratios of Yellow Perch and European Perch steadily increased with total body length, but European Perch were consistently feeding at higher trophic positions than Yellow Perch at a given length. European Perch occupied considerably higher trophic positions (mean trophic position = 3.9) than Yellow Perch (mean trophic position = 2.8). Large European Perch were increasingly piscivorous, whereas large Yellow Perch were more opportunistic and omnivorous predators of invertebrate prey. Overall, the trophic position among individual Yellow Perch varied more strongly than in European Perch. We conclude that both species similarly increase in trophic position with size, but the specific size-dependency of both trophic position and resource use varies with taxonomy and local ecological conditions. Thus, body size as a sole measure of trophic position should be considered cautiously when generalizing across populations and species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号