共查询到20条相似文献,搜索用时 15 毫秒
1.
二色补血草的耐盐性研究 总被引:1,自引:0,他引:1
通过NaCl胁迫发芽试验、盆栽浇灌NaCl盐水试验、不同含盐量土壤的种植试验,研究二色补血草(Limoniumbicolor)3个时期的耐盐能力。结果表明:高浓度NaCl对二色补血草种子的萌发有明显的抑制作用,种子的发芽率与盐浓度之间呈显著的负相关,种子萌发时盐胁迫的适宜值、临界值、极限值分别是0.49%、1.30%、2.11%;盆栽试验结果表明,二色补血草在2.0%以下的NaCl盐水胁迫下没有表现明显的盐害症状,只表现高浓度NaCl胁迫下,生长量低于低浓度处理的,当处理浓度达到2.4%时,多数植株濒临死亡;不同含盐量土壤的种植试验结果表明,在自然条件下,二色补血草成株耐盐临界值为1.7%~1.8%。试验结果说明二色补血草具有较强的耐盐能力,适合在滩涂盐碱地推广种植。 相似文献
2.
V. M. Serkov 《Russian Journal of Marine Biology》2003,29(6):368-371
Salinity tolerance in some marine teleost fishes was studied. Based on a comparison of sexually mature specimens in the summer season, the investigated species can be arranged in the order of decreasing capability for hyperosmoregulation into the following series: the Far Eastern dace Trybolodon brandti, the haarder Mugil soiuy > the frog sculpin Myoxocephalus stelleri > the snowy sculpin M. brandti > the plain sculpin M. jaok > the masked greenling Hexagrammos octogrammus > the pipefish Syngnathus acusimilis. The adult Far Eastern dace and the haarder showed high salinity tolerance and fully adapted to fresh water. Sculpins and the masked greenling usually occur only in seas or brackish water, but they were capable of enduring fresh water for a long time. Unlike them, the pipefish, which is also a euryhaline fish and occurs in river estuaries and brackish bays, perished in fresh water within 1 h. Representatives of the genus Myoxocephalus show between-species differences in salinity tolerance, which allows them to colonize extensive near-shore areas of the sea and to occupy specific ecological niches. 相似文献
3.
通过NaCl胁迫发芽试验、盆栽浇灌NaCl盐水试验、不同含盐量土壤的种植试验,研究二色补血草(Limonium bicolor)3个时期的耐盐能力。结果表明:高浓度NaCl对二色补血草种子的萌发有明显的抑制作用,种子的发芽率与盐浓度之间呈显著的负相关,种子萌发时盐胁迫的适宜值、临界值、极限值分别是0.49%、1.30%、2.11%;盆栽试验结果表明,二色补血草在2.0%以下的NaCl盐水胁迫下没有表现明显的盐害症状,只表现高浓度NaCl胁迫下,生长量低于低浓度处理的,当处理浓度达到2.4%时,多数植株濒临死亡;不同含盐量土壤的种植试验结果表明,在自然条件下,二色补血草成株耐盐临界值为1.7%~1.8%。试验结果说明二色补血草具有较强的耐盐能力,适合在滩涂盐碱地推广种植。 相似文献
4.
5.
6.
Plant salt-tolerance mechanisms 总被引:12,自引:0,他引:12
Ulrich Deinlein Aaron B. Stephan Tomoaki Horie Wei Luo Guohua Xu Julian I. Schroeder 《Trends in plant science》2014,19(6):371-379
7.
The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars 总被引:6,自引:0,他引:6
Hulusi Koca Melike Bor Filiz
zdemir smail Türkan 《Environmental and Experimental Botany》2007,60(3):344-351
The effect of increasing NaCl concentrations was studied on two different cultivars (cv. Orhangazi and cv. Cumhuriyet) of Sesamum indicum. Seedlings were grown for 40 days in half strength Hoagland solution and after 40 days treated with different NaCl concentrations (0, 50 and 100 mM) for 21 days. Differences in growth parameters, lipid peroxidation, antioxidative enzyme activities and proline accumulation were tested in order to put forward the relative tolerance or sensitivity of the cultivars. Results indicated that both parameters differ according to the cultivar's ability in coping oxidative stress caused by salinity. Constitutive levels of antioxidative enzyme activities were almost the same between the cultivars; however, cv. Cumhuriyet was able to induce antioxidative enzyme activities more efficiently when subjected to salt stress. Growth parameters, lipid peroxidation and proline accumulation results are also in good correlation with supporting this cultivar's being relatively tolerant. 相似文献
8.
Background
Drought and salinity are two major abiotic stresses that severely limit barley production worldwide. Physiological and genetic complexity of these tolerance traits has significantly slowed the progress of developing stress-tolerant cultivars. Marker-assisted selection (MAS) may potentially overcome this problem. In the current research, seventy two double haploid (DH) lines from a cross between TX9425 (a Chinese landrace variety with superior drought and salinity tolerance) and a sensitive variety, Franklin were used to identify quantitative trait loci (QTL) for drought and salinity tolerance, based on a range of developmental and physiological traits.Results
Two QTL for drought tolerance (leaf wilting under drought stress) and one QTL for salinity tolerance (plant survival under salt stress) were identified from this population. The QTL on 2H for drought tolerance determined 42% of phenotypic variation, based on three independent experiments. This QTL was closely linked with a gene controlling ear emergency. The QTL on 5H for drought tolerance was less affected by agronomic traits and can be effectively used in breeding programs. A candidate gene for this QTL on 5H was identified based on the draft barley genome sequence. The QTL for proline accumulation, under both drought and salinity stresses, were located on different positions to those for drought and salinity tolerance, indicating no relationship with plant tolerance to either of these stresses.Conclusions
Using QTL mapping, the relationships between QTL for agronomic and physiological traits and plant drought and salinity tolerance were studied. A new QTL for drought tolerance which was not linked to any of the studied traits was identified. This QTL can be effectively used in breeding programs. It was also shown that proline accumulation under stresses was not necessarily linked with drought or salinity tolerance based on methods of phenotyping used in this experiment. The use of proline content in breeding programs can also be limited by the accuracy of phenotyping.Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1243-8) contains supplementary material, which is available to authorized users. 相似文献9.
Percolomonads are common freshwater, marine and hypersaline tetraflagellated organisms. Current phylogenetic analyses of eukaryotes comprise only two species of this underinvestigated family. Here, we studied the morphology, salinity tolerance and 18S rDNA gene-based phylogeny of seven percolomonad cultures. We describe three new genera and five novel species of Percolomonadida based on phylogenetic distances and morphological characteristics: Barbelia atlantica, B. abyssalis, Lula jakobsenorum, Nakurumonas serrata and Percolomonas doradorae.The new species show features typical for percolomonads, one long flagellum for skidding, three shorter flagella of equal length and a ventral feeding groove. The new species comprise organisms living in marine and athalassic hypersaline waters with salinity ranging from 10 to 150 PSU. Based on these novel taxa, the taxonomy and phylogeny of Percolatea was extended and further resolved. 相似文献
10.
Summary Information regarding the relative levels of salt tolerance between cultivars of Kentucky bluegrass (Poa pratensis L.) is lacking. The objectives of this study were to 1) develop a simple, quick and sensitive method of screening turfgrass species for NaCl tolerance and 2) to compare the relative salt tolerance of five cultivars of Kentucky bluegrass (Ram I, Adelphi, Baron, Bensun, and Nassau) to other known salt tolerant turfgrass species such as alkalaigrass (Puccinellia distans (L.) Parl. cv. Fults) and two cultivars of red fescue (Festuca rubra L. Dawson, and Checker).Alkalaigrass and both cultivars of red fescue retained a high level of salt tolerance compared to the Kentucky bluegrass cultivars. Significant variability in salt tolerance was apparent among the Kentucky bluegrass cultivars with Adelphi and Ram I exhibiting the best overall tolerance. 相似文献
11.
Jan A. Pechenik Islay D. Marsden 《Journal of experimental marine biology and ecology》2003,292(2):159-176
The primitive pulmonate snail Amphibola crenata embeds embryos within a smooth mud collar on exposed estuarine mudflats in New Zealand. Development through hatching of free-swimming veliger larvae was monitored at 15 salinity and temperature combinations covering the range of 2-30 ppt salinity and 15-25 °C. The effect of exposure to air on developmental rate was also assessed. There were approximately 18,000 embryos in each egg collar. The total number of veligers released from standard-sized egg collar fragments varied with both temperature and salinity: embryonic survival was generally higher at 15 and 20 °C than at 25 °C; moreover, survival was generally highest at intermediate salinities, and greatly reduced at 2 ppt salinity regardless of temperature. Even at 2 ppt salinity, however, about one-third of embryos were able to develop successfully to hatching. Embryonic tolerance to low salinity was apparently a property of the embryos themselves, or of the surrounding egg capsules; there was no indication that the egg collars protected embryos from exposure to environmental stress. Mean hatching times ranged between 7 and 22 days, with reduced developmental rates both at lower temperature and lower salinity. At each salinity tested, developmental rate to hatching was similar at 20 and 25 °C. At 15 °C, time to hatching was approximately double that recorded at the two higher exposure temperatures. Exposing the egg collars to air for 6-9 h each day at 20 °C (20 ppt salinity) accelerated hatching by about 24 h, suggesting that developmental rate in this species is limited by the rates at which oxygen or wastes can diffuse into and from intact collars, respectively. Similarly, veligers from egg capsules that were artificially separated from egg collars at 20 °C developed faster than those within intact egg collars. The remarkable ability of embryos of A. crenata to hatch over such a wide range of temperatures and salinities, and to tolerate a considerable degree of exposure to air, explains the successful colonization of this species far up into New Zealand estuaries. 相似文献
12.
Abstract The effect of NaCl salinity and potassium supplement on growth, tissue ion concentration, photosynthesis, yield and fruit quality characteristics of tomato plants was studied. Tomato plants, hyb. Belladonna, were grown in 8.5 l pots, filled with 1:3 sand:perlite mixture and irrigated with a half-strength Hoagland solution through a closed hydroponic system. Six irrigation treatments were applied, including combinations of 3 salinity (0, 35 and 70 mM NaCl) and two potassium levels (K1: 200 ppm and K2: 400 ppm) in the nutrient solution. Salinity reduced photosynthesis resulting in reduced plant height and dry weight. Yield was reduced by 25% and 69% at 35 and 70 mM, respectively, as compared to control plants (0 mM NaCl). Both total soluble solids and titratable acidity of the fruit increased with increasing salinity and K levels. The application of high potassium level (K2) reduced the concentration of Na and increased that of K in the leaves and roots of the plants, as compared to K1 treatment. Toxicity symptoms were mostly observed in the leaves of 70K1 plants, while no visual symptoms of toxicity were observed in 70K2 treatment. Despite the positive effects of potassium supplement in reducing Na concentration and the absence of toxicity symptoms in the leaves, plant growth was not improved, while leaf photosynthesis was reduced. Furthermore, no positive effects in the percentage of marketable fruit, mean fruit weight and yield were observed in the plants receiving extra K. 相似文献
13.
Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance 总被引:2,自引:0,他引:2
We investigated the effects of short-term salinity stress and spermidine application to salinized nutrient solution on polyamine metabolism and various stress defense reactions in the roots of two cucumber (Cucumis sativus L.) cultivars, Changchun mici and Jinchun No. 2. Seedlings grown in nutrient solution salinized with 50 mM NaCl for 8 d displayed reduced relative water content, net photosynthetic rates and plant growth, together with increased lipid peroxidation and electrolyte leakage in the roots. These changes were more marked in cv. Jinchun No. 2 than in cv. Changchun mici, confirming that the latter cultivar is more salinity-tolerant than the former. Salinity stress caused an increase in superoxide and hydrogen peroxide production, particularly in cv. Jinchun No. 2 roots, while the salinity-induced increase in antioxidant enzyme activities and proline contents in the roots was much larger in cv. Changchun mici than in cv. Jinchun No. 2. In comparison to cv. Jinchun No. 2, cv. Changchun mici showed a marked increase in arginine decarboxylase, ornithine decarboxylase, S-adenosylmethionine decarboxylase and diamine oxidase activities, as well as free spermidine and spermine, soluble conjugated and insoluble bound putrescine, spermidine and spermine contents in the roots during exposure to salinity. On the other hand, spermidine application to salinized nutrient solution resulted in alleviation of the salinity-induced membrane damage in the roots and plant growth and photosynthesis inhibition, together with an increase in polyamine and proline contents and antioxidant enzyme activities in the roots of cv. Jinchun No. 2 but not of cv. Changchun mici. These results suggest that spermidine confers short-term salinity tolerance on cucumber probably through inducing antioxidant enzymes and osmoticants. 相似文献
14.
采用盆栽试验,设置不同盐胁迫浓度,通过萌发至幼苗期的出苗速度、植株形态和生物量等指标对200个花生品种(系)进行耐盐性评价.结果表明: 随盐胁迫浓度的增加,花生出苗时间延长,对植株形态建成抑制加重,物质积累减少.鉴定花生品种耐盐性强弱的适宜盐胁迫浓度为0.30%~0.45%.采用隶属函数值法将10个指标归结为平均隶属函数值,根据不同胁迫浓度下各指标与平均隶属函数值之间的相关性大小,植株鲜质量、地上部鲜质量、地下部鲜质量、地下部干质量、株高和主茎高均较大,可作为首选指标,植株干质量、地上部干质量、主根长和出苗速率均较小,可作为辅助指标综合判断品种的耐盐能力.200个品种(系)在不同盐胁迫浓度下均可分成高度耐盐型、耐盐型、盐敏感型和高度盐敏感型4组.随盐胁迫强度加大,耐盐品种数量下降,而盐敏感品种数量上升.部分品种在低、中、高盐胁迫强度下表现出统一性(均耐盐或均敏感);部分品种存在差异性,即低胁迫强度下表现耐盐性而在高胁迫强度下表现盐敏感性. 相似文献
15.
Effects of NaCl stress on proline and cation accumulation in salt sensitive and tolerant turfgrasses
Summary Concentrations of proline, sodium and potassium in shoot tissues of five turfgrass species were measured following exposure to 170 mM NaCl salinity stress. Salt tolerant ‘Fults’ alkaligrass and ‘Dawson’ red fescue restricted the accumulation of Na-ions to significatnly low levels compared to the salt sensitive Kentucky bluegrasses (‘Adelphi’ and ‘Ram I’) and ‘Jamestown’ red fescue. Accumulation of proline began in all species within 24 h of initiation of salt stress but at a more rapid rate and higher overall concentration for ‘Fults’ alkaligrass. Proline levels were variable and too low in relation to sodium accumulations to have any significant osmoregulatory role in salt tolerance among all cultivars tested with the possible exception of alkaligrass. 相似文献
16.
Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? 总被引:1,自引:0,他引:1
In order to analyze the putative impact of polyamines (PAs) on the plant response to salt, seedlings from the salt-sensitive rice cultivar I Kong Pao (IKP) were exposed for 5, 12 and 19 days to 0, 50 or 100 mM NaCl in the absence, or in the presence of exogenous PAs (putrescine (Put), spermidine (Spd) or spermine (Spm) 1mM) or inhibitors of PA synthesis (methylglyoxalbis-guanyl hydrazone (MGBG) 1mM, cyclohexylammonium (CHA) 5mM and D-arginine (D-Arg) 5mM). The addition of PAs in nutritive solution reduced plant growth in the absence of NaCl and did not afford protection in the presence of salt. PA-treated plants exhibited a higher K+/Na+ ratio in the shoots, suggesting an improved discrimination among monovalent cations at the root level, especially at the sites of xylem loading. The diamine Put induced a decrease in the shoot water content in the presence of NaCl, while Spd and Spm had no effects on the plant water status. In contrast to Spd, Spm was efficiently translocated to the shoots. Both PAs (Spd and Spm) induced a decrease in cell membrane stability as suggested by a strong increase in malondialdehyde content of PA-treated plants exposed to NaCl. These results are discussed in relation to the putative functions of PAs in stressed plant metabolism. 相似文献
17.
18.
Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses 总被引:33,自引:0,他引:33
R. MUNNS 《Plant, cell & environment》1993,16(1):15-24
Recent progress in improving the salt tolerance of cultivated plants has been slow. Physiologists have been unable to define single genes or even specific metabolic processes that molecular biologists could target, or pinpoint the part of the plant in which such genes for salt tolerance might be expressed. While the physiological might be expressed. While the physiological processes are undoubtedly complex, faster progress on unraveling mechanisms of salt tolerance might be made if there were more effort to test hypotheses rather than to accumulate data, and to integrate cellular and whole plant responses. This article argues that salts taken up by the plant do not directly control plant growth by affecting turgor, photosynthesis or the activity of any one enzyme. Rather, the build-up of salt in old leaves hasten their death, and the loss of these leaves affects the supply of assimilates or hormones to the growing regions and thereby affects growth. 相似文献
19.
Physiology of halophytes 总被引:12,自引:0,他引:12
T. J. Flowers 《Plant and Soil》1985,89(1-3):41-56
Summary The cellular basis of salt tolerance in halophytes depends upon the compartmentation of ions necessary for osmoregulation in vacuoles and upon osmotic adjustment of the cytoplasm by compatible solutes. The central role played by Na+ and Cl– in osmotic adjustment suggests that the transport of these ions and its regulation must be of primary importance in the physiology of the plant as a whole. There have been few investigations into the regulation of leaf ion concentrations, but such data as are in the literature suggest that limiting xylem Na+ (and Cl–) concentrations, together with continued leaf expansion, are particularly important. The role of phloem in retranslocation is uncertain due to lack of data. Decreases in transpiration rate per unit area of leaf help to lower the ion input into leaves. Any linked reductions in photosynthesis appear to be due to decreases in stomatal frequency. 相似文献
20.
Palmero Llamas D de Cara Gonzalez M Iglesias Gonzalez C Ruíz Lopez G Tello Marquina JC 《Journal of industrial microbiology & biotechnology》2008,35(11):1411-1418
Germination of macroconidia and/or microconidia of 24 strains of Fusarium solani, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. sambucinum, F. oxysporum and F. proliferatum isolated from fluvial channels and sea beds of the south-eastern coast of Spain, and three control strains (F. oxysporum isolated from affected cultures) was studied in distilled water in response to a range of water potentials adjusted with
NaCl. (0, −13.79, −41.79, −70.37, −99.56 and −144.54 bars). The viability (UFC/ml) of suspensions was also tested in three
time periods (0, 24 and 48 h). Conidia always germinated in distilled water. The pattern of conidial germination observed
of F. verticilloides, F. oxysporum, F. proliferatum, F. chlamydosporum and F. culmorum was similar. A great diminution of spore germination was found in −13.79 bars solutions. Spore germination percentage for
F. solani isolates was maximal at 48 h and −13.79 bars with 21.33% spore germination, 16% higher than germination in distilled water.
F. equiseti shows the maximum germination percentage in −144.54 bars solution in 24 h time with 12.36% germination. This results did
not agree with those obtained in the viability test were maximum germination was found in distilled water. The viability analysis
showed the great capacity of F. verticilloides strains to form viable colonies, even in such extreme conditions as −144.54 bars after 24 h F. proliferatum colony formation was prevented in the range of −70.37 bars. These results show the clear affectation of water potential to
conidia germination of Fusaria. The ability of certain species of Fusarium to develop a saprophytic life in the salt water of the Mediterranean Sea could be certain. Successful germination, even under
high salty media conditions, suggests that Fusarium spp. could have a competitive advantage over other soil fungi in crops irrigated with saline water. In the specific case
of F. solani, water potential of −13.79 bars affected germination positively. It could indicate that F. solani has an special physiological mechanism of survival in low water potential environments. 相似文献