首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genomic selection (GS) is of interest in breeding because of its potential for predicting the genetic value of individuals and increasing genetic gains per unit of time. To date, very few studies have reported empirical results of GS potential in the context of large population sizes and long breeding cycles such as for boreal trees. In this study, we assessed the effectiveness of marker-aided selection in an undomesticated white spruce (Picea glauca (Moench) Voss) population of large effective size using a GS approach. A discovery population of 1694 trees representative of 214 open-pollinated families from 43 natural populations was phenotyped for 12 wood and growth traits and genotyped for 6385 single-nucleotide polymorphisms (SNPs) mined in 2660 gene sequences. GS models were built to predict estimated breeding values using all the available SNPs or SNP subsets of the largest absolute effects, and they were validated using various cross-validation schemes. The accuracy of genomic estimated breeding values (GEBVs) varied from 0.327 to 0.435 when the training and the validation data sets shared half-sibs that were on average 90% of the accuracies achieved through traditionally estimated breeding values. The trend was also the same for validation across sites. As expected, the accuracy of GEBVs obtained after cross-validation with individuals of unknown relatedness was lower with about half of the accuracy achieved when half-sibs were present. We showed that with the marker densities used in the current study, predictions with low to moderate accuracy could be obtained within a large undomesticated population of related individuals, potentially resulting in larger gains per unit of time with GS than with the traditional approach.  相似文献   

2.
Genomic prediction has been widely utilized to estimate genomic breeding values (GEBVs) in farm animals. In this study, we conducted genomic prediction for 20 economically important traits including growth, carcass and meat quality traits in Chinese Simmental beef cattle. Five approaches (GBLUP, BayesA, BayesB, BayesCπ and BayesR) were used to estimate the genomic breeding values. The predictive accuracies ranged from 0.159 (lean meat percentage estimated by BayesCπ) to 0.518 (striploin weight estimated by BayesR). Moreover, we found that the average predictive accuracies across 20 traits were 0.361, 0.361, 0.367, 0.367 and 0.378, and the averaged regression coefficients were 0.89, 0.86, 0.89, 0.94 and 0.95 for GBLUP, BayesA, BayesB, BayesCπ and BayesR respectively. The genomic prediction accuracies were mostly moderate and high for growth and carcass traits, whereas meat quality traits showed relatively low accuracies. We concluded that Bayesian regression approaches, especially for BayesR and BayesCπ, were slightly superior to GBLUP for most traits. Increasing with the sizes of reference population, these two approaches are feasible for future application of genomic selection in Chinese beef cattle.  相似文献   

3.

Background

Accuracy of genomic prediction depends on number of records in the training population, heritability, effective population size, genetic architecture, and relatedness of training and validation populations. Many traits have ordered categories including reproductive performance and susceptibility or resistance to disease. Categorical scores are often recorded because they are easier to obtain than continuous observations. Bayesian linear regression has been extended to the threshold model for genomic prediction. The objective of this study was to quantify reductions in accuracy for ordinal categorical traits relative to continuous traits.

Methods

Efficiency of genomic prediction was evaluated for heritabilities of 0.10, 0.25 or 0.50. Phenotypes were simulated for 2250 purebred animals using 50 QTL selected from actual 50k SNP (single nucleotide polymorphism) genotypes giving a proportion of causal to total loci of.0001. A Bayes C π threshold model simultaneously fitted all 50k markers except those that represented QTL. Estimated SNP effects were utilized to predict genomic breeding values in purebred (n = 239) or multibreed (n = 924) validation populations. Correlations between true and predicted genomic merit in validation populations were used to assess predictive ability.

Results

Accuracies of genomic estimated breeding values ranged from 0.12 to 0.66 for purebred and from 0.04 to 0.53 for multibreed validation populations based on Bayes C π linear model analysis of the simulated underlying variable. Accuracies for ordinal categorical scores analyzed by the Bayes C π threshold model were 20% to 50% lower and ranged from 0.04 to 0.55 for purebred and from 0.01 to 0.44 for multibreed validation populations. Analysis of ordinal categorical scores using a linear model resulted in further reductions in accuracy.

Conclusions

Threshold traits result in markedly lower accuracy than a linear model on the underlying variable. To achieve an accuracy equal or greater than for continuous phenotypes with a training population of 1000 animals, a 2.25 fold increase in training population size was required for categorical scores fitted with the threshold model. The threshold model resulted in higher accuracies than the linear model and its advantage was greatest when training populations were smallest.  相似文献   

4.
Pearson''s correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression in the tails of the distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different trait–environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these algorithms for selecting individuals belonging to the best α=10, 15, 20, 25, 30, 35, 40% of the distribution was estimated using Cohen''s kappa coefficient (κ) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis for α=15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used ρ as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with the response vector of the original training sets dichotomised using a given threshold. For α=15%, SVC-lin presented the highest κ coefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in 9 data sets) and the best RE in the same 13 data sets, with values ranging from 0.393 to 0.948 (statistically significant in 12 data sets). RR produced the best mean for both κ and RE in one data set (0.148 and 0.381, respectively). Regarding the wheat data sets, SVC-lin presented the best κ in 12 of the 16 data sets, with outcomes ranging from 0.280 to 0.580 (statistically significant in 4 data sets) and the best RE in 9 data sets ranging from 0.484 to 0.821 (statistically significant in 5 data sets). SVC-rbf (0.235), RR (0.265) and RHKS (0.422) gave the best κ in one data set each, while RHKS and BL tied for the last one (0.234). Finally, BL presented the best RE in two data sets (0.738 and 0.750), RFR (0.636) and SVC-rbf (0.617) in one and RHKS in the remaining three (0.502, 0.458 and 0.586). The difference between the performance of SVC-lin and that of the rest of the models was not so pronounced at higher percentiles of the distribution. The behaviour of regression and classification algorithms varied markedly when selection was done at different thresholds, that is, κ and RE for each algorithm depended strongly on the selection percentile. Based on the results, we propose classification method as a promising alternative for GS in plant breeding.  相似文献   

5.
Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3–40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31–0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04–0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.  相似文献   

6.

Background

Genomic prediction of breeding values from dense single nucleotide polymorphisms (SNP) genotypes is used for livestock and crop breeding, and can also be used to predict disease risk in humans. For some traits, the most accurate genomic predictions are achieved with non-linear estimates of SNP effects from Bayesian methods that treat SNP effects as random effects from a heavy tailed prior distribution. These Bayesian methods are usually implemented via Markov chain Monte Carlo (MCMC) schemes to sample from the posterior distribution of SNP effects, which is computationally expensive. Our aim was to develop an efficient expectation–maximisation algorithm (emBayesR) that gives similar estimates of SNP effects and accuracies of genomic prediction than the MCMC implementation of BayesR (a Bayesian method for genomic prediction), but with greatly reduced computation time.

Methods

emBayesR is an approximate EM algorithm that retains the BayesR model assumption with SNP effects sampled from a mixture of normal distributions with increasing variance. emBayesR differs from other proposed non-MCMC implementations of Bayesian methods for genomic prediction in that it estimates the effect of each SNP while allowing for the error associated with estimation of all other SNP effects. emBayesR was compared to BayesR using simulated data, and real dairy cattle data with 632 003 SNPs genotyped, to determine if the MCMC and the expectation-maximisation approaches give similar accuracies of genomic prediction.

Results

We were able to demonstrate that allowing for the error associated with estimation of other SNP effects when estimating the effect of each SNP in emBayesR improved the accuracy of genomic prediction over emBayesR without including this error correction, with both simulated and real data. When averaged over nine dairy traits, the accuracy of genomic prediction with emBayesR was only 0.5% lower than that from BayesR. However, emBayesR reduced computing time up to 8-fold compared to BayesR.

Conclusions

The emBayesR algorithm described here achieved similar accuracies of genomic prediction to BayesR for a range of simulated and real 630 K dairy SNP data. emBayesR needs less computing time than BayesR, which will allow it to be applied to larger datasets.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0082-4) contains supplementary material, which is available to authorized users.  相似文献   

7.
Genomic best linear unbiased prediction (BLUP) is a statistical method that uses relationships between individuals calculated from single-nucleotide polymorphisms (SNPs) to capture relationships at quantitative trait loci (QTL). We show that genomic BLUP exploits not only linkage disequilibrium (LD) and additive-genetic relationships, but also cosegregation to capture relationships at QTL. Simulations were used to study the contributions of those types of information to accuracy of genomic estimated breeding values (GEBVs), their persistence over generations without retraining, and their effect on the correlation of GEBVs within families. We show that accuracy of GEBVs based on additive-genetic relationships can decline with increasing training data size and speculate that modeling polygenic effects via pedigree relationships jointly with genomic breeding values using Bayesian methods may prevent that decline. Cosegregation information from half sibs contributes little to accuracy of GEBVs in current dairy cattle breeding schemes but from full sibs it contributes considerably to accuracy within family in corn breeding. Cosegregation information also declines with increasing training data size, and its persistence over generations is lower than that of LD, suggesting the need to model LD and cosegregation explicitly. The correlation between GEBVs within families depends largely on additive-genetic relationship information, which is determined by the effective number of SNPs and training data size. As genomic BLUP cannot capture short-range LD information well, we recommend Bayesian methods with t-distributed priors.  相似文献   

8.
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross‐validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross‐validations. The accuracies of GEBVs from random cross‐validations (range 0.17–0.61) were higher than were those from sire family cross‐validations (range 0.00–0.51). The GEBV accuracies of 0.41–0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording.  相似文献   

9.

Background

Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders.

Results

We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs.

Conclusions

solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0398-7) contains supplementary material, which is available to authorized users.  相似文献   

10.
Genomic selection (GS) is a DNA-based method of selecting for quantitative traits in animal and plant breeding, and offers a potentially superior alternative to traditional breeding methods that rely on pedigree and phenotype information. Using a 60 K SNP chip with markers spaced throughout the entire chicken genome, we compared the impact of GS and traditional BLUP (best linear unbiased prediction) selection methods applied side-by-side in three different lines of egg-laying chickens. Differences were demonstrated between methods, both at the level and genomic distribution of allele frequency changes. In all three lines, the average allele frequency changes were larger with GS, 0.056 0.064 and 0.066, compared with BLUP, 0.044, 0.045 and 0.036 for lines B1, B2 and W1, respectively. With BLUP, 35 selected regions (empirical P<0.05) were identified across the three lines. With GS, 70 selected regions were identified. Empirical thresholds for local allele frequency changes were determined from gene dropping, and differed considerably between GS (0.167–0.198) and BLUP (0.105–0.126). Between lines, the genomic regions with large changes in allele frequencies showed limited overlap. Our results show that GS applies selection pressure much more locally than BLUP, resulting in larger allele frequency changes. With these results, novel insights into the nature of selection on quantitative traits have been gained and important questions regarding the long-term impact of GS are raised. The rapid changes to a part of the genetic architecture, while another part may not be selected, at least in the short term, require careful consideration, especially when selection occurs before phenotypes are observed.  相似文献   

11.
Accuracy of genomic breeding values in multi-breed dairy cattle populations   总被引:1,自引:0,他引:1  

Background

Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV.

Methods

Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies.

Results

When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained.

Conclusion

Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL.  相似文献   

12.

Background

All progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip. The reference population consisted of 677 bucks and 148 selection candidates. With the two-step approach based on genomic best linear unbiased prediction (GBLUP), prediction accuracy of candidates did not outperform that of the parental average. We investigated a GBLUP method based on a single-step approach, with or without blending of the two breeds in the reference population.

Methods

Three models were used: (1) a multi-breed model, in which Alpine and Saanen breeds were considered as a single breed; (2) a within-breed model, with separate genomic evaluation per breed; and (3) a multiple-trait model, in which a trait in the Alpine was assumed to be correlated to the same trait in the Saanen breed, using three levels of between-breed genetic correlations (ρ): ρ = 0, ρ = 0.99, or estimated ρ. Quality of genomic predictions was assessed on progeny-tested bucks, by cross-validation of the Pearson correlation coefficients for validation accuracy and the regression coefficients of daughter yield deviations (DYD) on genomic breeding values (GEBV). Model-based estimates of average accuracy were calculated on the 148 candidates.

Results

The genetic correlations between Alpine and Saanen breeds were highest for udder type traits, ranging from 0.45 to 0.76. Pearson correlations with the single-step approach were higher than previously reported with a two-step approach. Correlations between GEBV and DYD were similar for the three models (within-breed, multi-breed and multiple traits). Regression coefficients of DYD on GEBV were greater with the within-breed model and multiple-trait model with ρ = 0.99 than with the other models. The single-step approach improved prediction accuracy of candidates from 22 to 37% for both breeds compared to the two-step method.

Conclusions

Using a single-step approach with GBLUP, prediction accuracy of candidates was greater than that based on parent average of official evaluations and accuracies obtained with a two-step approach. Except for regression coefficients of DYD on GEBV, there were no significant differences between the three models.  相似文献   

13.
Habier D  Fernando RL  Dekkers JC 《Genetics》2007,177(4):2389-2397
The success of genomic selection depends on the potential to predict genome-assisted breeding values (GEBVs) with high accuracy over several generations without additional phenotyping after estimating marker effects. Results from both simulations and practical applications have to be evaluated for this potential, which requires linkage disequilibrium (LD) between markers and QTL. This study shows that markers can capture genetic relationships among genotyped animals, thereby affecting accuracies of GEBVs. Strategies to validate the accuracy of GEBVs due to LD are given. Simulations were used to show that accuracies of GEBVs obtained by fixed regression-least squares (FR-LS), random regression-best linear unbiased prediction (RR-BLUP), and Bayes-B are nonzero even without LD. When LD was present, accuracies decrease rapidly in generations after estimation due to the decay of genetic relationships. However, there is a persistent accuracy due to LD, which can be estimated by modeling the decay of genetic relationships and the decay of LD. The impact of genetic relationships was greatest for RR-BLUP. The accuracy of GEBVs can result entirely from genetic relationships captured by markers, and to validate the potential of genomic selection, several generations have to be analyzed to estimate the accuracy due to LD. The method of choice was Bayes-B; FR-LS should be investigated further, whereas RR-BLUP cannot be recommended.  相似文献   

14.

Background

The impact of additive-genetic relationships captured by single nucleotide polymorphisms (SNPs) on the accuracy of genomic breeding values (GEBVs) has been demonstrated, but recent studies on data obtained from Holstein populations have ignored this fact. However, this impact and the accuracy of GEBVs due to linkage disequilibrium (LD), which is fairly persistent over generations, must be known to implement future breeding programs.

Materials and methods

The data set used to investigate these questions consisted of 3,863 German Holstein bulls genotyped for 54,001 SNPs, their pedigree and daughter yield deviations for milk yield, fat yield, protein yield and somatic cell score. A cross-validation methodology was applied, where the maximum additive-genetic relationship (amax) between bulls in training and validation was controlled. GEBVs were estimated by a Bayesian model averaging approach (BayesB) and an animal model using the genomic relationship matrix (G-BLUP). The accuracy of GEBVs due to LD was estimated by a regression approach using accuracy of GEBVs and accuracy of pedigree-based BLUP-EBVs.

Results

Accuracy of GEBVs obtained by both BayesB and G-BLUP decreased with decreasing amax for all traits analyzed. The decay of accuracy tended to be larger for G-BLUP and with smaller training size. Differences between BayesB and G-BLUP became evident for the accuracy due to LD, where BayesB clearly outperformed G-BLUP with increasing training size.

Conclusions

GEBV accuracy of current selection candidates varies due to different additive-genetic relationships relative to the training data. Accuracy of future candidates can be lower than reported in previous studies because information from close relatives will not be available when selection on GEBVs is applied. A Bayesian model averaging approach exploits LD information considerably better than G-BLUP and thus is the most promising method. Cross-validations should account for family structure in the data to allow for long-lasting genomic based breeding plans in animal and plant breeding.  相似文献   

15.
Y Zhao  M F Mette  M Gowda  C F H Longin  J C Reif 《Heredity》2014,112(6):638-645
Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection.  相似文献   

16.
Animal breeding faces one of the most significant changes of the past decades - the implementation of genomic selection. Genomic selection uses dense marker maps to predict the breeding value of animals with reported accuracies that are up to 0.31 higher than those of pedigree indexes, without the need to phenotype the animals themselves, or close relatives thereof. The basic principle is that because of the high marker density, each quantitative trait loci (QTL) is in linkage disequilibrium (LD) with at least one nearby marker. The process involves putting a reference population together of animals with known phenotypes and genotypes to estimate the marker effects. Marker effects have been estimated with several different methods that generally aim at reducing the dimensions of the marker data. Nearly all reported models only included additive effects. Once the marker effects are estimated, breeding values of young selection candidates can be predicted with reported accuracies up to 0.85. Although results from simulation studies suggest that different models may yield more accurate genomic estimated breeding values (GEBVs) for different traits, depending on the underlying QTL distribution of the trait, there is so far only little evidence from studies based on real data to support this. The accuracy of genomic predictions strongly depends on characteristics of the reference populations, such as number of animals, number of markers, and the heritability of the recorded phenotype. Another important factor is the relationship between animals in the reference population and the evaluated animals. The breakup of LD between markers and QTL across generations advocates frequent re-estimation of marker effects to maintain the accuracy of GEBVs at an acceptable level. Therefore, at low frequencies of re-estimating marker effects, it becomes more important that the model that estimates the marker effects capitalizes on LD information that is persistent across generations.  相似文献   

17.

Objective

To investigate the potential involvements of E-cadherin and β-catenin in meningioma.

Methods

Immunohistochemistry staining was performed on samples from patients with meningioma. The results were graded according to the positive ratio and intensity of tissue immunoreactivity. The expression of E-cadherin and β-catenin in meningioma was analyzed by its relationship with WHO2007 grading, invasion, peritumoral edema and postoperative recurrence.

Results

The positive rates of E-cadherin in meningioma WHO I, II, III were 92.69%, 33.33% and 0, respectively, (P<0.05); while the positive rates of β-catenin in meningioma WHO I, II, III were 82.93%, 33.33% and 20.00%, respectively, (P<0.05). The positive rate of E-cadherin in meningioma without invasion (94.12%) was higher than that with invasion (46.67%) (P<0.05). The difference in the positive rate of β-catenin between meningioma without invasion (88.24%) and meningioma with invasion (33.33%, P<0.05) was also statically significant. The positive rates of E-cadherin in meningioma with peritumoral edema 0, 1, 2, 3 were 93.75%, 85.71%, 60.00% and 0 respectively, (P<0.05); the positive rates of β-catenin in meningioma with peritumoral edema 0, 1, 2, 3 were 87.50%, 85.71%, 30.00% and 0 respectively, (P<0.01). The positive rates of E- cadherin in meningioma with postoperative recurrence were 33.33%, and the positive rate with postoperative non-recurrence was 90.00% (P<0.01). The positive rates of β-catenin in meningioma with postoperative recurrence and non-recurrence were 11.11%, 85.00%, respectively (P<0.01).

Conclusion

The expression levels of E- cadherin and β-catenin correlated closely to the WHO 2007 grading criteria for meningioma. In atypical or malignant meningioma, the expression levels of E-cadherin and β-catenin were significantly lower. The expression levels of E- cadherin and β-catenin were also closely correlated with the invasion status of meningioma, the size of the peritumoral edema and the recurrent probabilities of the meningioma, all in an inverse correlationship. Taken together, the present study provided novel molecular targets in clinical treatments to meningioma.  相似文献   

18.
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (rTI) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of rmg = 0.5. For a low heritability trait (h2 = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles rTI from 0.27 to 0.54. Including the conventional information source ‘own performance’ into the before mentioned index, additional SNP information increases rTI by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.  相似文献   

19.

Background

Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested.

Results

Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71–0.79) and moderately high for growth (r = 0.52–0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies.

Conclusions

Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease more rapidly over generations. The most promising short-term approach for genomic selection would likely be the selection of superior individuals within large full-sib families vegetatively propagated to implement multiclonal forestry.  相似文献   

20.
Yi Jia  Jean-Luc Jannink 《Genetics》2012,192(4):1513-1522
Genetic correlations between quantitative traits measured in many breeding programs are pervasive. These correlations indicate that measurements of one trait carry information on other traits. Current single-trait (univariate) genomic selection does not take advantage of this information. Multivariate genomic selection on multiple traits could accomplish this but has been little explored and tested in practical breeding programs. In this study, three multivariate linear models (i.e., GBLUP, BayesA, and BayesCπ) were presented and compared to univariate models using simulated and real quantitative traits controlled by different genetic architectures. We also extended BayesA with fixed hyperparameters to a full hierarchical model that estimated hyperparameters and BayesCπ to impute missing phenotypes. We found that optimal marker-effect variance priors depended on the genetic architecture of the trait so that estimating them was beneficial. We showed that the prediction accuracy for a low-heritability trait could be significantly increased by multivariate genomic selection when a correlated high-heritability trait was available. Further, multiple-trait genomic selection had higher prediction accuracy than single-trait genomic selection when phenotypes are not available on all individuals and traits. Additional factors affecting the performance of multiple-trait genomic selection were explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号