首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The emergence of multidrug resistance has become an alarming and lifethreatening phenomenon for humans. Various mechanisms are involved in the development of resistance in bacteria towards antimicrobial compounds and immune system. Bacterial biofilm is a complicated, selfdefensive, rigid structure of bacteria crowded together to develop a selfrecessive nature, which enhances the ability to cause infections much easier in the living host. P. aeruginosa biofilm formation is supported by extracellular polymeric substances (EPS) such as exopolysaccharides, extracellular DNA (eDNA), proteins and biomolecules. Published evidences suggest that biofilm formation can also be the result of several other mechanisms such as cell signaling or communication. Bacterial biofilm is also regulated by strong intercellular communication known as Quorum Sensing (QS). It is a cellular communication mechanism involving autoinducers and regulators. In P. aeruginosa, Acyl Homoserine Lactone, the prime signaling molecule, controls approximately 300 genes responsible for various cellular functions, including its pathogenesis. The surrounding environment and metabolism have a specific effect on the biofilm and QS, thus, understanding the involvement of QS in the biofilm developing mechanism is still complicated and complex to understand. Therefore, this review will include basic knowledge of the biofilmforming mechanism and other regulatory factors involved in causing infections and diseases in the host organisms.  相似文献   

2.
3.
生物膜形成机理及影响因素探究   总被引:7,自引:0,他引:7  
生物膜是一种依附于载体材料的特殊微生物聚集体,其大量存在于自然环境中,并在水质净化、废水处理等领域广泛应用.本文介绍了生物膜形成基本原理,综述了有关载体界面性质、胞外多聚物(EPS)关键组分对生物膜形成及其稳定性的影响,并对各学科交叉研究生物膜提供技术思路.  相似文献   

4.
Extracellular polymeric substances (EPS) of biological origin are ubiquitous in excess sludges and can be applied as an underlying bioflocculant, owing to their high content of macromolecules and cations. However, low flocculating activity limits the feasibility of their practical applications. This study provides a novel EPS fractionation approach to improve their flocculability by extracting an active EPS fraction and removing the others with low flocculability. The results showed that for two excess sludges (called sludge A and sludge B), the tightly bound EPS (TB-EPS) fraction possessed a high flocculating rate to kaolin suspension compared with the other EPS fractions [i.e., supernatant, slime, and loosely bound EPS (LB-EPS) fraction] (>54.1 ± 1.4% vs <7.8 ± 1.6%). High bioflocculability of TB-EPS fraction could be attributable to high contents of macromolecules (330–1200 kDa) and trivalent cations (Fe3+ and Al3+). Further investigation reveals that the TB-EPS fraction caused aggregation of particles by bridging and sweep flocculation.  相似文献   

5.
The review focusses on the use of genetic techniques to manipulate bacteria that are important to the dairy industry. Both classical and molecular approaches have been used to improve strains involved in yoghurt and cheese production. Examples are provided of methods for; increasing efficiency of substrate conversion, regulating the production of flavour enhancing metabolites, and developing starter cultures resistant to bacteriophage and bacteriocin attack. The possible applications of these systems are discussed  相似文献   

6.
7.
超临界萃取技术及其在食品工业中的应用进展   总被引:3,自引:0,他引:3       下载免费PDF全文
本文概述了超临界二氧化碳萃取技术,简要介绍了其在食品工业中的最新运用动态,并对超临界二氧化碳萃取技术作了展望。  相似文献   

8.
Divalent cations act as bridges among extracellular polymeric substances (EPS) and form cross-linkage for the self-immobilization of microbial biomass. However, their effects on the nitrification performance during the biological nitrogen removal are still unclear. In the present study, the effects of Mg2+ on the nitrifying activity, EPS and floc characteristics were investigated using a lab-scale sequencing batch reactor. The distribution of Mg2+ was quantified at different level of sludge floc. The results indicated that the nitrification activity was significantly improved when influent Mg2+ was below 1.1 mmol/L, but suppressed at 3 mmol/L. The overall performance characterized by COD, NH4+-N and TN, the particle size and sludge flocculation ability rapidly increased with the increase of Mg2+ concentration. Mg2+ was mainly distributed in the pellet and changed slightly in supernatant, LB-EPS and TB-EPS. The four fluorescence peaks detected by three-dimensional excitation-emission matrix spectra were attributed to PN-like substances and humic acid-like substances in the LB-EPS and TB-EPS. The results of XPS analysis demonstrated that LB-EPS and TB-EPS comprised similar elements. Therefore, the types of EPS functional groups was unchanged under varied Mg2+ concentrations, while their proportions changed and LB-EPS/EPS was key factor for the changes of bioflocculation.  相似文献   

9.
10.
Antimicrobial peptides have captured the attention of researchers in recent years because of their efficiency in fighting against pathogens. These peptides are found in nature and have been isolated from a wide range of organisms. Furthermore, analogs or synthetic derivatives have successfully been developed on the basis of natural peptide patterns. Long use of pesticides and antibiotics has led to development of resistance among pathogens and other pests as well as increase of environmental and health risks. Antimicrobial peptides are under consideration as new substitutes for conventional pesticides and antibiotics. Many plants and animals have been manipulated with antimicrobial peptide-encoding genes and several pesticides and drugs have been produced based on these peptides. Such strategies and products may still have a long way to go before being confirmed by regulatory bodies and others need to surmount technical problems before being accepted as applicable ones. In spite of these facts, several cases of successful use of antimicrobial peptides in agriculture and food industry indicate a promising future for extensive application of these peptides. In this review, we consider the developing field of antimicrobial peptide applications in various agricultural activities.  相似文献   

11.
Extracellular polymeric substances (EPS) were considered as fundamental substances in colony formation; however, the understanding of EPS composition remains limited. This study analyzed the content and composition of EPS fractions (soluble EPS, loosely bound EPS, and tightly bound EPS) of four Microcystis species from laboratory cultures in both unicellular and colonial morphologies, as well as colonies collected during Microcystis blooms, using fluorescence excitation - emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC). This method enables to make insight into protein-like and humic acid-like components but cannot detect polysaccharides. The EPS was successfully categorized into three humic acid-like components (C1 – C3) and a protein-like component (C4). Component C1 was discovered to be involved in colony formation and colony size growth of Microcystis. EPS content varied among Microcystis morphospecies, such as M. aeruginosa, M. wesenbergii and M. ichthyoblabe, and this was significantly affected by the environmental constraints rather than the morphospecies. The proportion of C1 relating to larger colony size was negatively correlated to temperature and concentrations of TN and TP. The tightly bound EPS directly promoted colony formation, but the soluble EPS or loosely bound EPS alone did not induce colony formation in Microcystis. These results advanced the current knowledge on the chemical materials involved in the colony formation of Microcystis and provided new clues in unicellular-multicellular transformation as well as colonial morphology changes in Microcystis.  相似文献   

12.
生物膜的存在使一些由病原菌引发的疾病变得更加难以治疗。经研究发现一种环二肽物质DKP——cyclo(Pro-Phe)能够抑制这3株病原菌(Staphylococcus aureus,Pseudomonas aeruginosa,Candida albicans)生物膜的形成。通过对不同浓度DKP作用下所形成的生物膜进行结晶紫定量、菌落计数分析和结构显微分析表明:在DKP的浓度达到10 mg/ml时,S. aureus和P. aeruginosa的生物膜几乎消失;在DKP的浓度达到12 mg/ml时,C. albicans的生物膜被显著抑制。这一发现为寻找新型的生物膜抑制剂治愈顽固疾病带来了新的希望。  相似文献   

13.
The contributions of loosely bound extracellular polymeric substances (LB-EPS), tightly bound EPS (TB-EPS), residual sludge (the sludge left after EPS extraction) and functional groups such as amine, carboxyl, phosphate and lipid on aerobic granules on biosorption of four different dyes (Reactive Brilliant Blue KN-R (KN-R), Congo Red (CR), Reactive Brilliant Red K-2G (RBR) and Malachite Green (MG)) were investigated. EPS may be responsible for biosorption of cationic dyes. However, residual sludge always made greater contribution than that of EPS. The biosorption mechanisms were dependent on the functional groups on aerobic granules and dyes’ chemical structures. The lipid and phosphate groups might be the main binding sites for KN-R biosorption. Amine, carboxyl, phosphate and lipid were all responsible for the binding of CR. The lipid fractions played an important role for RBR biosorption. For MG, the phosphate groups gave the largest contribution.  相似文献   

14.
Flow cytometry applications in the food industry   总被引:1,自引:0,他引:1  
Flow cytometry has become a valuable tool in food microbiology. By analysing large numbers of cells individually using light-scattering and fluorescence measurements, this technique reveals both cellular characteristics and the levels of cellular components. Flow cytometry has been developed to rapidly enumerate microorganisms; to distinguish between viable, metabolically active and dead cells, which is of great importance in food development and food spoilage; and to detect specific pathogenic microorganisms by conjugating antibodies with fluorochromes, which is of great use in the food industry. In addition, high-speed multiparametric data acquisition, analysis and cell sorting, which allow other characteristics of individual cells to be studied, have increased the interest of food microbiologists in this technique. This mini-review gives an overview of the principles of flow cytometry and examples of the application of this technique in the food industry.  相似文献   

15.
Aerobic granulation is drawing increasing global interest in a quest for an efficient and innovative technology in wastewater treatment. Developed less than two decades ago, extensive research work on aerobic granulation has been reported. The instability of the granule, which is one of the main problems that hinder practical application of aerobic granulation technology, is still to be resolved. This paper presents a review of the literature in aerobic granulation focusing on factors that influence granule formation, granule development and their stability in the context of sludge granulation. The review attempts to shed light on the potential of developing granules with adequate structural stability for practical applications. The possibilities and perspective of using stored granule as inoculums for rapid startup, and as microbial supplement to enhance treatment of bioreactor systems are also discussed.  相似文献   

16.
The integrity of biofilms on voice prostheses used to rehabilitate speech in laryngectomized patients causes unwanted increases in airflow resistance, impeding speech. Biofilm integrity is ensured by extracellular polymeric substances (EPS). This study aimed to determine whether synthetic salivary peptides or mucolytics, including N-acetylcysteine and ascorbic acid, influence the integrity of voice prosthetic biofilms. Biofilms were grown on voice prostheses in an artificial throat model and exposed to synthetic salivary peptides, mucolytics and two different antiseptics (chlorhexidine and Triclosan). Synthetic salivary peptides did not reduce the air flow resistance of voice prostheses after biofilm formation. Although both chlorhexidine and Triclosan reduced microbial numbers on the prostheses, only the Triclosan-containing positive control reduced the air flow resistance. Unlike ascorbic acid, the mucolytic N-acetylcysteine removed most EPS from the biofilms and induced a decrease in air flow resistance.  相似文献   

17.
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001–2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.  相似文献   

18.
The structure of the biofouling layers formed on a pilot-scale membrane-coupled upflow anaerobic sludge blanket bioreactor (UASB) used to treat urban wastewater was analyzed by scanning electron microscopy and electron-dispersive X-ray microanalysis. For comparison, control samples of the membranes were fed either UASB effluent or raw wastewater in a laboratory-scale experiment. Microbial diversity in the fouling materials was analyzed by temperature gradient gel electrophoresis (TGGE) combined with sequence analysis of partial 16S rRNA. Significant differences in structure of the Bacteria communities were observed amongst the different fouling layers analyzed in the UASB membranes, particularly following a chemical cleaning step (NaClO), while the Archaea communities retained more similarity in all samples. The main Bacteria populations identified were evolutively close to Firmicutes (42.3%) and Alphaproteobacteria (30.8%), while Archaea were mostly affiliated to the Methanosarcinales and Methanospirillaceae. Sphingomonadaceae-related bacteria and methanogenic Archaea were persistently found as components of biofouling, regardless of chemical cleaning.  相似文献   

19.
Antimicrobial surfaces are one approach to prevent biofilms in the food industry. The aim of this study was to investigate the effect of poly((tert-butyl-amino)-methyl-styrene) (poly(TBAMS)) incorporated into linear low-density polyethylene (LLDPE) on the formation of mono- and mixed-species biofilms. The biofilm on untreated and treated LLDPE was determined after 48 and 168 h. The comparison of the results indicated that the ability of Listeria monocytogenes to form biofilms was completely suppressed by poly(TBAMS) (Δ168 h 3.2 log10 cfu cm?2) and colonization of Staphylococcus aureus and Escherichia coli was significantly delayed, but no effect on Pseudomonas fluorescens was observed. The results of dual-species biofilms showed complex interactions between the microorganisms, but comparable effects on the individual bacteria by poly(TBAMS) were identified. Antimicrobial treatment with poly(TBAMS) shows great potential to prevent biofilms on polymeric surfaces. However, a further development of the material is necessary to reduce the colonization of strong biofilm formers.  相似文献   

20.
Abstract Water and biofilms from two hydrothermal areas in central Portugal, and one hydrothermal area in New Mexico, USA, were examined for Legionella spp. In general, Legionella spp were isolated in higher numbers from biofilms than from water, although one biofilm with a temperature of 50°C, did not yield isolates of these organisms. In one area L. pneumophila serogroup (sg) 3 constituted the major population in the thermal discharge by the stream and the biofilm below it; however, L. pneumophila sg 1 was predominant in the sediments of the stream bed with minor thermal springs below the main discharge and in the water downstream. No Legionellae were isolated from water upstream of the hydrothermal area indicating that the thermal area was the source of the organisms in the stream water. In the other two hydrothermal areas, L. pneumophila sg 1 constituted the major population isolated, whereas L. pneumophila sg 3 was absent or isolated in low numbers. Isolates of L. micdadei were also recovered from one hydrothermal area, while ‘ L. londoniensis ’ was isolated from another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号