首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The seeds of many plant species present a food body that is consumed by animal dispersers. In theory, if the animals are polyphagous, the availability of alternative food resource other than the diaspore itself may influence its dispersal and survival. We used the myrmecochore Helleborus foetidus L. (Ranunculaceae), the seeds of which are attached to a lipid-rich elaiosome that is attractive to ants, as a model system to investigate (1) whether alternative foods that are present along with the plant affect ant foraging behavior and diaspore removal and (2) whether food availability in an ant nest affects seed predation and germination. In a field experiment, artificial diaspore depots were offered together with either sugar, insect corpses, seed, or no food (control). Contrary to the prediction that ants would rather concentrate their foraging effort on the highly rewarding alternative foods only, many workers, attracted by the sugar, switched to the hellebore diaspores, which significantly enhanced removal rate. Results obtained in the laboratory further indicated that the larvae of Aphaenogaster iberica (a major seed disperser) predated more on the H. foetidus embryos when no alternative food was available. This, in turn, slightly reduced seed germination. Overall, these results shed light, for the first time, on the potential indirect effects of alternative resources on the fate of diaspores adapted for ant dispersal.  相似文献   

2.
Appropriate sampling effort of interaction networks is necessary to extract robust indices describing the structure of species interactions. Here we show that time-invariant variation in the composition and diversity of interaction partners of plant individuals of the same species explains volatility in aggregate network statistics due to undersampling. Within a multi-species pollinator–plant interaction matrix, we replaced the interactions observed on multiple individuals of a single plant species (Sinapis arvensis, pooled interactions) with the plant–insect interactions observed on a single plant individual. In the resampling approach, we considered the interactions of 1 to 84 S. arvensis individuals in different combinations. For each resampled network, several commonly applied aggregated statistics were calculated to test how intraspecific variation affects the properties of a multi-species network. Our results showed that aggregate statistics are sensitive towards qualitative and quantitative intraspecific variation of flower–visitor interactions within a multi-species network, which may affect the ecological interpretation about the properties of a community. These findings challenge the robustness of commonly applied network indices, confirm the urge for a sufficient and representative sampling of interactions, and emphasize the significance of intraspecific variation in the context of communities and networks.  相似文献   

3.
Piovia-Scott J 《Oecologia》2011,166(2):411-420
Protective ant–plant mutualisms—where plants provide food or shelter to ants and ants protect the plants from herbivores—are a common feature in many ecological communities, but few studies have examined the effect of disturbance on these interactions. Disturbance may affect the relationship between plants and their associated ant mutualists by increasing the plants’ susceptibility to herbivores, changing the amount of reward provided for the ants, and altering the abundance of ants and other predators. Pruning was used to simulate the damage to buttonwood mangrove (Conocarpus erectus) caused by hurricanes. Pruned plants grew faster than unpruned plants, produced lower levels of physical anti-herbivore defenses (trichomes, toughness), and higher levels of chemical defenses (tannins) and extrafloral nectaries. Thus, simulated hurricane damage increased plant growth and the amount of reward provided to ant mutualists, but did not have consistent effects on other anti-herbivore defenses. Both herbivores and ants increased in abundance on pruned plants, indicating that the effects of simulated hurricane damage on plant traits were propagated to higher trophic levels. Ant-exclusion led to higher leaf damage on both pruned and upruned plants. The effect of ant-exclusion did not differ between pruned and unpruned plants, despite the fact that pruned plants had higher ant and herbivore densities, produced more extrafloral nectaries, and had fewer physical defenses. Another common predator, clubionid spiders, increased in abundance on pruned plants from which ants had been excluded. I suggest that compensatory predation by these spiders diminished the effect of ant-exclusion on pruned plants.  相似文献   

4.
In recent times, network theory has become a useful tool to study the structure of the interactions in ecological communities. However, typically, these approaches focus on a particular kind of interaction while neglecting other possible interactions present in the ecosystem. Here, we present an ecological network for plant communities that consider simultaneously positive and negative interactions, which were derived from the spatial association and segregation between plant species. We employed this network to study the structure and the association strategies in a semiarid plant community of Cabo de Gata-Níjar Natural Park, SE Spain, and how they changed in 4 sites that differed in stocking rate. Association strategies were obtained from the partitions of the network, built based on a relaxed structural balance criterion. We found that grazing simplified the structure of the plant community. With increasing stocking rate species with no significant associations became dominant and the number of partitions decreased in the plant community. Independently of stocking rate, many species presented an associative strategy in the plant community because they benefit from the association to certain ‘nurse’ plants. These ‘nurses’ together with species that developed a segregating strategy, intervened in most of the interactions in the community. Ecological networks that combine links with different signs provide a new insight to analyze the structure of natural communities and identify the species which play a central role in them.  相似文献   

5.
The influence of native fauna on non-native plant population growth, size, and distribution is not well documented. Previous studies have shown that native insects associated with tall thistle (Cirsium altissimum) also feed on the leaves, stems, and flower heads of the Eurasian congener C. vulgare, thus limiting individual plant performance. In this study, we tested the effects of insect herbivores on the population growth rate of C. vulgare. We experimentally initiated invasions by adding seeds at four unoccupied grassland sites in eastern Nebraska, USA, and recorded plant establishment, survival, and reproduction. Cumulative foliage and floral herbivory reduced C. vulgare seedling density, and prevented almost any reproduction by C. vulgare in half the sites. The matrix model we constructed showed that this herbivory resulted in a reduction of the asymptotic population growth rate (λ), from an 88 % annual increase to a 54 % annual decline. These results provide strong support for the hypothesis that indigenous herbivores limit population invasion of this non-native plant species into otherwise suitable grassland habitat.  相似文献   

6.
Nicklen EF  Wagner D 《Oecologia》2006,148(1):81-87
Many plant species attract ants onto their foliage with food rewards or nesting space. However, ants can interfere with plant reproduction when they visit flowers. This study tests whether Acacia constricta separates visiting ant species temporally or spatially from newly opened inflorescences and pollinators. The diurnal activity patterns of ants and A. constricta pollinators peaked at different times of day, and the activity of pollinators followed the daily dehiscence of A. constricta inflorescences. In addition to being largely temporally separated, ants rarely visited open inflorescences. A floral ant repellent contributes to the spatial separation of ants and inflorescences. In a field experiment, ants of four species were given equal access to inflorescences in different developmental stages. On average, the frequency with which ants made initial, antennal contact with the floral stages did not differ, but ants significantly avoided secondary contact with newly opened inflorescences relative to buds and old inflorescences, and old inflorescences relative to buds. Ants also avoided contact with pollen alone, indicating that pollen is at least one source of the repellent. The results suggest A. constricta has effectively resolved the potential conflict between visiting ants and plant reproduction.  相似文献   

7.
Although ants may induce community-wide effects via changes in physical habitats in terrestrial environments, their influence on aquatic communities living in plant-held waters remains largely underexplored. The neotropical tank-bromeliad Aechmea mertensii (Bromeliaceae) occurs along forest edges in ant-gardens initiated by Camponotus femoratus or by Pachycondyla goeldii. Its leaves form wells that hold rainwater and provide suitable habitats for many aquatic organisms. We postulated that these ant–plant mutualisms indirectly affect the microbial community structure via changes in the environmental conditions experienced by the plants. To test this hypothesis, we analyzed the protist communities from 63 tank-bromeliads associated with either C. femoratus or P. goeldii (hereafter Cf-Aechmea and Pg-Aechmea) along a forest edge in French Guiana. For each plant, a large number of environmental variables (including habitat structure, food resources, incident radiation and the presence of aquatic invertebrates) were quantified to determine their relative importance in driving any observed differences across ant-associated plants. Pg-Aechmea are located in sun-exposed areas and hold low volumes of water and low amounts of detritus, whereas Cf-Aechmea are located in partially shaded areas and accumulate higher amounts of water and detritus. Protists (i.e., protozoa and algae) inhabiting Cf-Aechmea exhibit greater richness and abundances than those in Pg-Aechmea. Variations in detritus content, number of leaves, incident radiation, and the epiphyte richness of the ant-garden were the main factors explaining the variation in protist richness. A shift in the functional group composition of protists between bromeliads tended by different ant species suggested that mutualistic ants indirectly mediate changes in the microbial food web.  相似文献   

8.
Predicting the outcomes of any mutualistic interaction between ants and plants can be a very difficult task, since these outcomes are often determined by the ecological context in which the interacting species are embedded. Network theory has been an important tool to improve our understanding about the organizational patterns of animal–plant interactions. Nevertheless, traditionally, network studies have focused mainly on species-based differences and ignoring the importance of individual differences within populations. In this study, we evaluated if downscaling an ant–plant network from species to the individual level results in structural and functional changes in a network involving different-sized plant individuals. For this, we studied the extrafloral-nectar producing-tree Caryocar brasiliense (Caryocaraceae) and their associated ants in a Neotropical savanna. We observed 254 interactions involving 43 individuals of C. brasiliense and 47 ant species. The individual-based ant–plant network exhibited a nested pattern of interactions, with all developmental stages contributing equally to structuring this non-random pattern. We also found that plants with greater centrality within the network were better protected by their ant partners. However, plants with higher levels of individual specialization were not necessarily better protected by ants. Overall, we presented empirical evidence that intra-population variations are important for shaping ant–plant networks, since they can change the level of protection against herbivores conferred by the ants. These results highlight the importance of individual-based analyses of ecological networks, opening new research venues in the eco-evolutionary dynamics of ant–plant interactions.  相似文献   

9.
In the Southeast Asian tropics, Arhopala lycaenid butterflies feed on Macaranga ant-plants inhabited by Crematogaster (subgenus Decacrema) ants tending Coccus-scale insects. A recent phylogenetic study showed that (1) the plants and ants have been codiversifying for the past 20–16 million years (Myr), and that (2) the tripartite symbiosis was formed 9–7 Myr ago, when the scale insects became involved in the plant–ant mutualism. To determine when the lycaenids first parasitized the Macaranga tripartite symbiosis, we constructed a molecular phylogeny of the lycaenids that feed on Macaranga by using mitochondrial and nuclear DNA sequence data and estimated their divergence times based on the cytochrome oxidase I molecular clock. The minimum age of the lycaenids was estimated by the time-calibrated phylogeny to be 2.05 Myr, about one-tenth the age of the plant–ant association, suggesting that the lycaenids are latecomers that associated themselves with the pre-existing symbiosis of plant, ant, and scale insects.  相似文献   

10.
Myrmecophytes (ant–plants) have special hollow structures (domatia) in which obligate ant partners nest. As the ants live only on the plants and feed exclusively on plant food bodies, sap-sucking homopterans in the domatia, and/or the homopterans honeydew, they are suitable for the study of colony size regulation by food. We examined factors regulating ant colony size in four myrmecophytic Macaranga species, which have strictly species-specific association with Crematogaster symbiont ants. Intra- and interspecific comparison of the plants showed that the ant biomass per unit food biomass was constant irrespective of plant developmental stage and plant species, suggesting that the ant colony size is limited by food supply. The primary food offered by the plants to the ants was different among Macaranga species. Ants in Macaranga beccariana and Macaranga bancana relied on homopterans rather than food bodies, and appeared to regulate the homopteran biomass and, as a consequence, regulate the ants own biomass. In contrast, ants in Macaranga winkleri and Macaranga trachyphylla relied primarily on food bodies rather than homopterans, and the plants appeared to manipulate the ant colony size. Per capita plant investment in ants (ant dry weight plant dry weight–1) was different among the four Macaranga species. The homoptera-dependent M. beccariana and M. bancana harbored lower biomass of ants than the food-body dependent M. winkleri, suggesting that energy loss is involved in the homoptera-interposing symbiotic system which has one additional trophic level. The plants investment ratio to the ants generally decreased as plants grew. The evolution of the plant reward-offering system in ant–plant–homopteran symbioses is discussed with an emphasis on the role of homopterans.  相似文献   

11.
The loss of a species from an ecological community can trigger a cascade of additional extinctions; the complex interactions that comprise ecological communities make the dynamics and impacts of such a cascade challenging to predict. Previous studies have typically considered global extinctions, where a species cannot re-enter a community once it is lost. However, in some cases a species only becomes locally extinct, and may be able to reinvade from surrounding communities. Here, we use a dynamic, Boolean network model of plant–pollinator community assembly to analyze the differences between global and local extinction events in mutualistic communities. As expected, we find that compared to global extinctions, communities respond to local extinctions with lower biodiversity loss, and less variation in topological network properties. We demonstrate that in the face of global extinctions, larger communities suffer greater biodiversity loss than smaller communities when similar proportions of species are lost. Conversely, smaller communities suffer greater loss in the face of local extinctions. We show that targeting species with the most interacting partners causes more biodiversity loss than random extinctions in the case of global, but not local, extinctions. These results extend our understanding of how mutualistic communities respond to species loss, with implications for community management and conservation efforts.  相似文献   

12.
Tillberg CV 《Oecologia》2004,140(3):506-515
In ant–plant symbioses, the behavior of ant inhabitants affects the nature of the interaction, ranging from mutualism to parasitism. Mutualistic species confer a benefit to the plant, while parasites reap the benefits of the interaction without reciprocating, potentially resulting in a negative impact on the host plant. Using the ant–plant symbiosis between Cordia alliodora and its ant inhabitants as a model system, I examine the costs and benefits of habitation by the four most common ant inhabitants at La Selva Biological Station, Costa Rica. Costs are measured by counting coccoids associated with each ant species. Benefits include patrolling behavior, effectiveness at locating resources, and recruitment response. I also compare the diets of the four ant species using stable isotope analysis of nitrogen (N) and carbon (C). Ants varied in their rates of association with coccoids, performance of beneficial behaviors, and diet. These differences in cost, benefit, and diet among the ant species suggest differences in the nature of the symbiotic relationship between C. alliodora and its ants. Two of the ant species behave in a mutualistic manner, while the other two ant species appear to be parasites of the mutualism. I determined that the mutualistic ants feed at a higher trophic level than the parasitic ants. Behavioral and dietary evidence indicate the protective role of the mutualists, and suggest that the parasitic ants do not protect the plant by consuming herbivores.  相似文献   

13.
Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant densities. We examined whether the growth of the early successional species Jacobaea vulgaris in soil collected from the field is related to the local variation in plant density of this species. In a grassland restoration site, we selected eight 8 m × 8 m plots, four with high and four with low densities of J. vulgaris plants. In 16 subplots in each plot we recorded the density and size of J. vulgaris, and characteristics of the vegetation and the soil chemistry. Soil collected from each subplot was used in a greenhouse pot-experiment to study the growth of J. vulgaris, both in pure field soil and in sterile soil inoculated with a small part of field soil.In the field, flowering J. vulgaris plants were taller, the percentage of rosette plants was higher and seed density was larger in High- than in Low-density plots. In the pot experiment, J. vulgaris had a negative plant–soil feedback, but biomass was also lower in soil collected from High- than from Low-density plots, although only when growing in inoculated soil. Regression analyses showed that J. vulgaris biomass of plants growing in pure soil was related to soil nutrients, but also to J. vulgaris density in the field.We conclude that in the field there is local variation in the negative plant–soil feedback of J. vulgaris and that this variation can be explained by the local density of J. vulgaris, but also by other factors such as nutrient availability.  相似文献   

14.
Mechanisms that affect a host plant’s ability to face herbivory are subjects of ongoing interest. Plant reproductive phenology plays a key role in the dynamics of communities in many ways. In ant–plant–herbivore interactions, host-plant phenology affects traits of its herbivores which in turn determine what traits ants must have to benefit the host-plant. Diversity of plant phenological traits could influence the ecological diversity of coevolved ant–plant mutualisms.  相似文献   

15.
We investigated the nitrogen (N) dynamics of an alpine–nival ecotone on Mt. Schrankogel, Tyrol, Austria, in relation to temperature. Natural abundance of 15N was used as a tool to elucidate differences in N cycling along an altitudinal transect ranging from 2,906 to 3,079 m, corresponding to a gradient in mean annual temperature of 2.4 °C. The amount of total soil N, of plant available N and soil C/N ratio decreased significantly with increasing altitude, whereas soil pH increased. Soil δ 15N decreased with increasing altitude from +2.2 to −2.1‰ and δ 15N of plant tissues (roots and leaves) decreased from −3.7 to −5.5‰. The large shift in soil δ 15N of 4.3‰ from the lowest to the highest site suggested substantial differences in N cycling in alpine and nival ecosystems in the alpine nival ecotone investigated. We concluded that N cycling at the alpine–nival ecotone is likely to be controlled by various factors: temperature, soil age and development, atmospheric N deposition and plant competition. Our results furthermore demonstrate that the alpine–nival ecotone may serve as a sensitive indicator of global change.  相似文献   

16.
Conservatism in species interaction, meaning that related species tend to interact with similar partners, is an important feature of ecological interactions. Studies at community scale highlight variations in conservatism strength depending on the characteristics of the ecological interaction studied. However, the heterogeneity of datasets and methods used prevent to compare results between mutualistic and antagonistic networks. Here we perform such a comparison by taking plant–insect communities as a study case, with data on plant–herbivore and plant–pollinator networks. Our analysis reveals that plants acting as resources for herbivores exhibit the strongest conservatism in species interaction among the four interacting groups. Conservatism levels are similar for insect pollinators, insect herbivores and plants as interacting partners of pollinators, although insect pollinators tend to have a slightly higher conservatism than the two others. Our results thus clearly support the current view that within antagonistic networks, conservatism is stronger for species as resources than for species as consumer. Although the pattern tends to be opposite for plant–pollinator networks, our results suggest that asymmetry in conservatism is much less pronounced between the pollinators and the plant they interact with. We discuss these differences in conservatism strength in relation with the processes structuring plant–insect communities.  相似文献   

17.
In southwestern USA, the jimsonweed Datura wrightii and the nocturnal moth Manduca sexta form a pollinator–plant and herbivore–plant association. Because the floral scent is probably important in mediating this interaction, we investigated the floral volatiles that might attract M. sexta for feeding and oviposition. We found that flower volatiles increase oviposition and include small amounts of both enantiomers of linalool, a common component of the scent of hawkmoth-pollinated flowers. Because (+)-linalool is processed in a female-specific glomerulus in the primary olfactory centre of M. sexta, we hypothesized that the enantiomers of linalool differentially modulate feeding and oviposition. Using a synthetic mixture that mimics the D. wrightii floral scent, we found that the presence of linalool was not necessary to evoke feeding and that mixtures containing (+)- and/or (−)-linalool were equally effective in mediating this behaviour. By contrast, females oviposited more on plants emitting (+)-linalool (alone or in mixtures) over control plants, while plants emitting (−)-linalool (alone or in mixtures) were less preferred than control plants. Together with our previous investigations, these results show that linalool has differential effects in feeding and oviposition through two neural pathways: one that is sexually isomorphic and non-enantioselective, and another that is female-specific and enantioselective.  相似文献   

18.
《Ostrich》2013,84(1-2):10-19
Long-term (1951–1985) data on the breeding waterbird populations and habitat modifications at Cape Flats sewage treatment works (Strandfontein) and Rondevlei Bird Sanctuary (Rondevlei) were assessed to establish the main factors affecting the breeding species richness and nest abundance. Fifty-two 'water-associated' breeding species were recorded in the Zeekoe River catchment waterbodies, 46 (88.5%) at Strandfontein, 38 (73.1%) at Rondevlei Bird Sanctuary (Rondevlei), 33 (63.5%) at Zeekoevlei and ten (19.2%) at Princess Vlei. Thirteen (25.5%) of the species were unique to Strandfontein and five (9.8%) to Rondevlei. Sorenson's similarity indices indicated high similarity (Cs = 0.81) in species richness and low similarity in nest abundance pattern (CN = 0.10) for the paired sites Strandfontein-Rondevlei. The lowest breeding species richness (11 species) was in winter (June) and the peak (42 species) was in spring (October). Twenty-four species joined the breeding population of Strandfontein during 1959–1976 (during which time pond water surface area increased 2372%). The mean breeding species richness increased significantly (χ 2 2 = 14.42, P <0.001) at Strandfontein during three distinctive periods: 1951–1958 (pre-construction), 1959–1976 (construction) and 1977–1985 (stabilization). At Rondevlei there were no significant differences in breeding species richness during the same periods. However, there were significant differences in the nest abundance pattern between these grouped years, both at Strandfontein (χ 2 2 = 1472.2, P <0.001) and at Rondevlei (χ 2 2 = 60.28, P <0.001). It is suggested that the same pool of species use the heterogeneous habitats at all the sites in the catchment according to their availability. The remarkable increase in species richness and nest abundance at Strandfontein after the late 1970s is attributed to higher habitat structural complexity, broad habitat types, stabilization and maturation of pond water and the subsequent increase in food diversity and availability. The decrease in Rondevlei nesting populations after the 1960s is probably related to fluctuations in water levels, cover of mudbanks with vegetation and high density of alien fish. A multipurpose management concept for conservation is proposed for the Zeekoe River catchment area. Strandfontein provides the greatest diversity of aquatic habitats not available elsewhere in the catchment (habitats for rare breeders such as Avocet, Black-winged Stilt, Red-billed Teal and some plovers) Rondevlei has a complementary habitat spectrum (suitable for Great Crested Grebe, Podiceps cristatus, Little Bittern, Ixobrychus minutus, and reedbed species). Zeekoevlei provides a large area of reedbed habitat for colonial breeding species (African Spoonbill and herons) and Princess Vlei is suggested for attracting Laridae.  相似文献   

19.
Ten different isolates of a carlavirus were detected by degenerate PCR from 12 garlic samples collected from 6 provinces in China, and the complete genome sequence of the Zhejiang isolate ZJ1 and 3′-terminal sequences of 9 other isolates were determined. The RNA genome of isolate ZJ1 consisted of 8363nts excluding the 3′-poly (A) tail, and the genome organization was similar to other carlaviruses with 6 open reading frames encoding a replicase, TGB1, TGB2, TGB3, CP and NABP respectively. Sequence comparisons showed that all 10 isolates were Garlic latent virus (GarLV). The variations in the TGB2, TGB3 and NABP were more significant than those in the CP. High homology was also detected between those isolates and Shallot latent virus (ShLV). Phylogenetic analysis suggested that GarLV isolates from garlic can be divided into 4 main groups and Chinese isolates belonged to each group. This is the first reported molecular analysis of members of the genus Carlavirus in China.  相似文献   

20.
Geographic mosaics of interspecific interactions can arise as a consequence of intrinsic and extrinsic deterministic factors. In this study, we took advantage of the recent discovery of a specialist leaf-miner (Caloptilia triadicae) on invasive Chinese tallow (Triadica sebifera) in the southeastern United States to examine deterministic drivers of variation in plant–animal antagonistic interactions. We conducted a common garden study to assess the influence of intrinsic host genetic variation and extrinsic microenvironment on Triadica traits as well as Caloptilia infestation and mortality. We found that tree size, branch leaf density, and leaf toughness differed according to multilocus estimates of genetic variation. Host genetic variation also influenced mortality of early instar Caloptilia, but had little effect on peak or late season infestation. Triadica from hyperinvasive populations were larger, exhibited reduced leaf density and tougher leaves, and had the lowest levels of peak season Caloptilia infestation, but also had the lowest levels of early instar mortality. Microhabitat variation associated with edge effects influenced tree size as well as late season infestation. These findings indicate that CaloptiliaTriadica interactions reflect seasonal shifts in the relative influence of intrinsic and extrinsic drivers, where peak season interactions largely reflect genetic variation in hosts, and late–season interactions reflect microenvironmental conditions. Further study of Caloptilia infestations could offer additional understanding of novel interactions that arise following species introductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号