首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO), and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase) that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.  相似文献   

2.
Group A streptococci (GAS) produce several secreted products that are thought to enhance pathogenicity by facilitating spread of the organisms through host tissues. Two such products, streptolysin O (SLO) and NAD+-glycohydrolase, appear to be functionally linked, in that SLO is required for transfer of NAD+-glycohydrolase into epithelial cells. However, the effects of NAD+-glycohydrolase on host cells are largely unexplored. We now report that SLO-mediated delivery of NAD+-glycohydrolase to the cytoplasm of human keratinocytes results in major changes in host cell biology that enhance GAS pathogenicity. We derived isogenic mutant strains deficient in the expression of SLO, NAD+-glycohydrolase or both proteins in the background of a virulent, M-type 3 strain of GAS. All three mutant strains were internalized by human keratinocytes more rapidly and in higher numbers than were organisms from the wild-type strain. Association of the mutant strains with keratinocytes also resulted in reduced cytotoxicity and reduced keratinocyte apoptosis compared with wild-type GAS. These results support a model in which NAD+-glycohydrolase contributes to GAS pathogenesis by modulating host cell signalling pathways to inhibit GAS internalization, to augment SLO-mediated cytotoxicity and to induce keratinocyte apoptosis. We conclude that NAD+-glycohydrolase is a novel type of bacterial toxin that acts intracellularly in the infected host to enhance the survival and proliferation of an extracellular pathogen.  相似文献   

3.
Streptolysin O (SLO) is a cholesterol-dependent cytolysin produced by the important human pathogen, group A Streptococcus (Streptococcus pyogenes or GAS). In addition to its cytolytic activity, SLO mediates the translocation of GAS NAD-glycohydrolase (NADase) into human epithelial cells in vitro. Production of both NADase and SLO is associated with augmented host cell injury beyond that produced by SLO alone, but the mechanism of enhanced cytotoxicity is not known. We have now shown that expression of NADase together with SLO dramatically enhanced the lytic activity of GAS culture supernatants for erythrocytes but had no effect on SLO-mediated poration of synthetic cholesterol-rich liposomes. This result revealed a previously unknown contribution of NADase to the cytolytic activity associated with GAS production of SLO. Purified recombinant SLO bound NADase in vitro, supporting a specific, physical interaction of the two proteins. Exposure of human keratinocytes to wild-type GAS, but not to a NADase-deficient mutant strain, resulted in profound depletion of cellular NAD+ and ATP. Furthermore, expression of recombinant GAS NADase in yeast, in the absence of SLO, induced growth arrest, depletion of NAD+ and ATP, and cell death. These findings have provided evidence that the augmentation of SLO-mediated cytotoxicity by NADase is a consequence of depletion of host cell energy stores through the enzymatic action of NADase. Together, the results have provided mechanistic insight into the cytotoxic effects of a unique bipartite bacterial toxin.  相似文献   

4.
Group A Streptococcus (GAS) colonizes the oropharynx and damaged skin. To cause local infection or severe invasive syndromes the bacteria must gain access into deeper tissues. Host cell death may facilitate this process. GAS internalization has been identified to induce apoptosis. We now report an alternate mechanism of GAS-mediated apoptosis of primary human keratinocytes, initiated by extracellular GAS and involving dysregulation of intracellular calcium to produce endoplasmic reticulum stress. Two bacterial virulence factors are required for effective induction of apoptosis by extracellular GAS: (i) hyaluronic acid capsule that inhibits bacterial internalization and (ii) secreted cytolysin, streptolysin O (SLO), that forms transmembrane pores that permit extracellular calcium influx into the cytosol. Induction of keratinocyte apoptosis by wild-type GAS was accompanied by cell detachment and loss of epithelial integrity, a phenomenon not observed with GAS deficient in capsule or SLO. We propose that cell signalling initiated by extracellular GAS compromises the epithelial barrier by inducing premature keratinocyte differentiation and apoptosis, thereby facilitating GAS invasion of deeper tissues.  相似文献   

5.
Streptococcus pyogenes (group A streptococcus (GAS)) is a pathogen that invades non-phagocytic host cells, and causes a variety of acute infections such as pharyngitis. Our group previously reported that intracellular GAS is effectively degraded by the host-cell autophagic machinery, and that a cholesterol-dependent cytolysin, streptolysin O (SLO), is associated with bacterial escape from endosomes in epithelial cells. However, the details of both the intracellular behavior of GAS and the process leading to its autophagic degradation remain unknown. In this study, we found that two host small G proteins, Rab5 and Rab7, were associated with the pathway of autophagosome formation and the fate of intracellular GAS. Rab5 was involved in bacterial invasion and endosome fusion. Rab7 was clearly multifunctional, with roles in bacterial invasion, endosome maturation, and autophagosome formation. In addition, this study showed that the bacterial cytolysin SLO supported the escape of GAS into the cytoplasm from endosomes, and surprisingly, a SLO-deficient mutant of GAS was viable longer than the wild-type strain although it failed to escape the endosomes. This intracellular behavior of GAS is unique and distinct from that of other types of bacterial invaders. Our results provide a new picture of GAS infection and host-cell responses in epithelial cells.  相似文献   

6.
Group A streptococcal (GAS) pharyngitis and the subsequent bacterial colonization of the human throat elicit an immune response that may precipitate acute rheumatic fever in a susceptible host. To study the bacterial determinants that influence throat colonization and induction of humoral immunity, we characterized the behavior of GAS strains in a baboon model. An M-type 3 clinical isolate of GAS typical of strains that cause pharyngitis and invasive infection was recovered from the pharynx of six out of six baboons for at least 6 weeks after oral inoculation. By contrast, an isogenic mutant deficient in M protein failed to colonize most animals or was rapidly cleared. An isogenic mutant deficient in hyaluronic acid capsule colonized five out of six animals, but only persisted in the pharynx for 14–21 days. Colonized animals developed serum anti- streptolysin O (SLO) and anti-M protein immunoglobulin (Ig)G. The kinetics of the antibody responses were similar to those seen after human infection. Peak titres increased with the duration of throat carriage. Colonization with GAS prevented recurrent colonization after challenge with the homologous wild-type strain, but not after challenge with a strain of different M protein type. Early clearance of the M protein-deficient strain was associated with increased susceptibility of this strain to phagocytic killing in non-immune serum, whereas clearance of the acapsular strain was associated with increased susceptibility to phagocytic killing in the presence of specific antibody. These studies support critical and distinct effects of the GAS M protein and capsule on throat colonization and induction of humoral immunity in a model that reproduces important features of pharyngeal colonization and immune response following human infection.  相似文献   

7.
Xenophagy, also known as antibacterial autophagy, functions as a crucial defense system that can utilize intracellular pattern recognition sensors, such as NLRP4, to recognize and selectively eliminate bacterial pathogens. However, little is known about how NLRP4 regulates xenophagy. Here, we report that NLRP4 binds ARHGDIA (Rho GDP dissociation inhibitor α) to regulate Rho GTPase signaling and facilitate actin-mediated xenophagy. Specifically, NLRP4 is recruited to Group A Streptococcus (GAS) and colocalizes with GAS-containing autophagosome-like vacuoles (GcAVs), where it regulates ARHGDIA-Rho GTPase recruitment to promote autophagosome formation. The interaction between NLRP4, ARHGDIA, and Rho GTPases is regulated by ARHGDIA Tyr156 phosphorylation, which acts as a gate to induce Rho-mediated xenophagy. Moreover, ARHGDIA and Rho GTPase are involved in actin-mediated ATG9A recruitment to phagophores, facilitating elongation to form autophagosomes. Collectively, these findings demonstrate that NLRP4 functions as a Rho receptor complex to direct actin dynamics regulating xenophagy.  相似文献   

8.
Streptococcus pyogenes uses the cytolysin streptolysin O (SLO) to translocate an enzyme, the S. pyogenes NAD+ glycohydrolase (SPN), into the host cell cytosol. However, the function of SPN in this compartment is not known. As a complication, many S. pyogenes strains express a SPN variant lacking NAD+ glycohydrolase (NADase) activity. Here, we show that SPN modifies several SLO‐ and NAD+‐dependent host cell responses in patterns that correlate with NADase activity. SLO pore formation results in hyperactivation of the cellular enzyme poly‐ADP‐ribose polymerase‐1 (PARP‐1) and production of polymers of poly‐ADP‐ribose (PAR). However, while SPN NADase activity moderates PARP‐1 activation and blocks accumulation of PAR, these processes continued unabated in the presence of NADase‐inactive SPN. Temporal analyses revealed that while PAR production is initially independent of NADase activity, PAR rapidly disappears in the presence of NADase‐active SPN, host cell ATP is depleted and the pro‐inflammatory mediator high‐mobility group box‐1 (HMGB1) protein is released from the nucleus by a PARP‐1‐dependent mechanism. In contrast, HMGB1 is not released in response to NADase‐inactive SPN and instead the cells release elevated levels of interleukin‐8 and tumour necrosis factor‐α. Thus, SPN and SLO combine to induce cellular responses subsequently influenced by the presence or absence of NADase activity.  相似文献   

9.
Group A Streptococcus (GAS) is a leading human bacterial pathogen capable of producing invasive infections even in previously healthy individuals. As frontline components of host innate defense, macrophages play a key role in control and clearance of GAS infections. We find GAS induces rapid, dose-dependent apoptosis of primary and cultured macrophages and neutrophils. The cell death pathway involves apoptotic caspases, is partly dependent on caspase-1, and requires GAS internalization by the phagocyte. Analysis of GAS virulence factor mutants, heterologous expression, and purified toxin studies identified the pore-forming cytolysin streptolysin O (SLO) as necessary and sufficient for the apoptosis-inducing phenotype. SLO-deficient GAS mutants induced less macrophage apoptosis in vitro and in vivo, allowed macrophage cytokine secretion, and were less virulent in a murine systemic infection model. Ultrastructural evidence of mitochondrial membrane remodeling, coupled with loss of mitochondrial depolarization and cytochrome c release, suggests a direct attack of the toxin initiates the intrinsic apoptosis pathway. A general caspase inhibitor blocked SLO-induced apoptosis and enhanced macrophage killing of GAS. We conclude that accelerated, caspase-dependent macrophage apoptosis induced by the pore-forming cytolysin SLO contributes to GAS immune evasion and virulence.Group A Streptococcus (GAS)4 is a leading human pathogen that annually infects hundreds of millions of people worldwide (1). The last 3 decades have witnessed a marked increase in severe, invasive forms of GAS infection, many attributable to a single globally disseminated clone of the M1T1 serotype (2). Invasive GAS infection defines a capacity of the pathogen to resist host innate defense mechanisms designed to prevent microbial spread beyond epithelial surfaces.Macrophages are critical host defense cells involved directly in bacterial clearance and also in alerting other immune system components to invading pathogens. Macrophage microbicidal activity is accomplished by phagocytic uptake coupled with the action of reactive oxygen species, enzymatic proteolysis, and cationic antimicrobial peptides; their role in amplification of the innate and adaptive immune responses is achieved through release of soluble factors such as cytokines and nitric oxide. Mice depleted of macrophages or treated with inhibitors of macrophage phagocytosis cannot clear GAS infections even at relatively low challenge doses (3), demonstrating the essential first line defense function of these immune cells against the pathogen.We sought to explore the interaction of the highly virulent GAS M1T1 clone with macrophages to better understand its propensity to produce invasive human infection. A prominent regulatory feature of macrophage biology in the context of infectious disease and inflammation is the process of apoptosis, mediated by caspase family proteases. Although a number of highly adapted intracellular bacterial pathogens, including Mycobacterium tuberculosis, Legionella pneumophila, and Brucella spp., have evolved mechanisms to block macrophage apoptosis and use the host cell as a vehicle for in vivo dissemination (46), a recent study of GAS M1T1 interactions with another host phagocytic cell type suggested a different outcome. In contrast to other prominent Gram-positive pathogens, including Staphylococcus aureus and Listeria monocytogenes, GAS induced an accelerated program of apoptosis in human neutrophils (7), although the specific virulence factor(s) involved, effects on caspase activation, and contribution to disease outcome were not studied.Here we report that GAS rapidly induces macrophage apoptosis through caspase-dependent pathways, promoted by release of cytochrome c and permeabilization of mitochondrial outer membranes. GAS-induced macrophage apoptosis is mediated by the cytolysin streptolysin O (SLO), which is both necessary and sufficient for the phenotype. SLO-mediated macrophage apoptosis leads to enhanced GAS survival, dampened cytokine responses, and increased virulence during systemic infection.  相似文献   

10.
Macroautophagy/autophagy plays a critical role in immunity by directly degrading invading pathogens such as Group A Streptococcus (GAS), through a process that has been named xenophagy. We previously demonstrated that autophagic vacuoles directed against GAS, termed GAS-containing autophagosome-like vacuoles (GcAVs), use recycling endosomes (REs) as a membrane source. However, the precise molecular mechanism that facilitates the fusion between GcAVs and REs remains unclear. Here, we demonstrate that STX6 (syntaxin 6) is recruited to GcAVs and forms a complex with VTI1B and VAMP3 to regulate the GcAV-RE fusion that is required for xenophagy. STX6 targets the GcAV membrane through its tyrosine-based sorting motif and transmembrane domain, and localizes to TFRC (transferrin receptor)-positive punctate structures on GcAVs through its H2 SNARE domain. Knockdown and knockout experiments revealed that STX6 is required for the fusion between GcAVs and REs to promote clearance of intracellular GAS by autophagy. Moreover, VAMP3 and VTI1B interact with STX6 and localize on the TFRC-positive puncta on GcAVs, and are also involved in the RE-GcAV fusion. Furthermore, knockout of RABGEF1 impairs the RE-GcAV fusion and STX6-VAMP3 interaction. These findings demonstrate that RABGEF1 mediates RE fusion with GcAVs through the STX6-VAMP3-VTI1B complex, and reveal the SNARE dynamics involved in autophagosome formation in response to bacterial infection.  相似文献   

11.
Autophagy acts as a host-defense system against pathogenic microorganisms such as Group A Streptococcus (GAS). Autophagy is a membrane-mediated degradation system that is regulated by intracellular membrane trafficking regulators, including small GTPase Rab proteins. Here, we identified Rab30 as a novel regulator of GAS-containing autophagosome-like vacuoles (GcAVs). We found that Rab30, a Golgi-resident Rab, was recruited to GcAVs in response to autophagy induction by GAS infection in epithelial cells. Rab30 recruitment was dependent upon its GTPase activity. In addition, the knockdown of Rab30 expression significantly reduced GcAV formation efficiency and impaired intracellular GAS degradation. Rab30 normally functions to maintain the structural integrity of the Golgi complex, but GcAV formation occurred even when the Golgi apparatus was disrupted. Although Rab30 also colocalized with a starvation-induced autophagosome, Rab30 was not required for autophagosome formation during starvation. These results suggest that Rab30 mediates autophagy against GAS independently of its normal cellular role in the structural maintenance of the Golgi apparatus, and autophagosome biogenesis during bacterial infection involves specific Rab GTPases.  相似文献   

12.
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis (“strep throat”) to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supramolecular networks. In this study, we used a virulent WT M1T1 GAS strain and its isogenic M1-deficient mutant to examine the role of M1-Fg binding in a proximal step in GAS infection-interaction with the pharyngeal epithelium. Expression of the M1 protein reduced GAS adherence to human pharyngeal keratinocytes by 2-fold, and this difference was increased to 4-fold in the presence of Fg. In stationary phase, surface M1 protein cleavage by the GAS cysteine protease SpeB eliminated Fg binding and relieved its inhibitory effect on GAS pharyngeal cell adherence. In a mouse model of GAS colonization of nasal-associated lymphoid tissue, M1 protein expression was associated with an average 6-fold decreased GAS recovery in isogenic strain competition assays. Thus, GAS M1 protein-Fg binding reduces GAS pharyngeal cell adherence and colonization in a fashion that is counterbalanced by SpeB. Inactivation of SpeB during the shift to invasive GAS disease allows M1-Fg binding, increasing pathogen phagocyte resistance and proinflammatory activities.  相似文献   

13.
Group A streptococcus (GAS) causes variety of diseases ranging from common pharyngitis to life-threatening severe invasive diseases, including necrotizing fasciitis and streptococcal toxic shock-like syndrome. The characteristic of invasive GAS infections has been thought to attribute to genetic changes in bacteria, however, no clear evidence has shown due to lack of an intriguingly study using serotype-matched isolates from clinical severe invasive GAS infections. In addition, rare outbreaks of invasive infections and their distinctive pathology in which infectious foci without neutrophil infiltration hypothesized us invasive GAS could evade host defense, especially neutrophil functions. Herein we report that a panel of serotype-matched GAS, which were clinically isolated from severe invasive but not from non-invaive infections, could abrogate functions of human polymorphnuclear neutrophils (PMN) in at least two independent ways; due to inducing necrosis to PMN by enhanced production of a pore-forming toxin streptolysin O (SLO) and due to impairment of PMN migration via digesting interleukin-8, a PMN attracting chemokine, by increased production of a serine protease ScpC. Expression of genes was upregulated by a loss of repressive function with the mutation of csrS gene in the all emm49 severe invasive GAS isolates. The csrS mutants from clinical severe invasive GAS isolates exhibited high mortality and disseminated infection with paucity of neutrophils, a characteristic pathology seen in human invasive GAS infection, in a mouse model. However, GAS which lack either SLO or ScpC exhibit much less mortality than the csrS-mutated parent invasive GAS isolate to the infected mice. These results suggest that the abilities of GAS to abrogate PMN functions can determine the onset and severity of invasive GAS infection.  相似文献   

14.
Group A streptococci (GAS) specifically attach to and internalize into human epithelial host cells. In some GAS isolates, fibronectin-binding proteins were identified as being responsible for these virulence traits. In the present study, the previously identified global negative regulator Nra was shown to control the binding of soluble fibronectin probably via regulation of protein F2 and/or SfbII expression in the serotype M49 strain 591. According to results from a conventional invasion assay based on the recovery of viable intracellular bacteria, the increased fibronectin binding did not affect bacterial adherence to HEp-2 epithelial cells, but was associated with a reduction in the internalization rates. However, when examined by confocal and electron microscopy techniques, the nra-mutant bacteria were shown to exhibit higher adherence and internalization rates than the corresponding wild type. The mutant bacteria escaped from the phagocytic vacuoles much faster, promoting consistent morphological changes which resulted in severe host cell damage. The apoptotic and lytic processes observed in nra-mutant infected host cells were correlated with an increased expression of the genes encoding superantigen SpeA, the cysteine protease SpeB, and streptolysin S in the nra-mutant bacteria. Adherence and internalization rates of a nra/speB-double mutant at wild-type levels indicated that the altered speB expression in the nra mutant contributed to the observed changes in both processes. The Nra-dependent effects on bacterial virulence were confined to infections carried out with stationary growth phase bacteria. In conclusion, the obtained results demonstrated that the global GAS regulator Nra modulates virulence genes, which are involved in host cell damage. Thus, by helping to achieve a critical balance of virulence factor expression that avoids the injury of target cells, Nra may facilitate GAS persistence in a safe intracellular niche.  相似文献   

15.
ABSTRACT

Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A Streptococcus (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.

Abbreviations: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A streptococcus; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2  相似文献   

16.
17.
Group A streptococci (GAS) are able to invade cultured epithelial and endothelial cells without evidence of intracellular replication. GAS, like other facultative intracellular bacterial pathogens, evolved such ability to enter and to survive within host cells avoiding the host defences, and bacterial intracellular survival could explain the recurrence of infections. We report here that 1 mg bovine lactoferrin (bLf)/mL significantly hindered the in vitro invasion of cultured epithelial cells by GAS isolated from patients suffering from pharyngitis and completely inhibited the invasiveness of GAS pretreated with subinhibiting concentrations of erythromycin or ampicillin. One milligram of bLf per millilitre was also able to increase the number of epithelial cells undergoing apoptosis following GAS invasion, although the number of intracellular GAS in the presence of bLf decreased by about 10-fold. The ability of bLf to decrease GAS invasion was confirmed by an in vivo trial carried out on 12 children suffering from pharyngitis and already scheduled for tonsillectomy. In tonsil specimens from children treated for 15 days before tonsillectomy with both oral erythromycin (500 mg t.i.d. (three times daily)) and bLf gargles (100 mg t.i.d.), a lower number of intracellular GAS was found in comparison with that retrieved in tonsil specimens from children treated with erythromycin alone (500 mg t.i.d.).  相似文献   

18.
Autophagy mediates the degradation of cytoplasmic contents in the lysosome and plays a significant role in immunity. Here we identified the small GTPases Rab9A and Rab23 as novel autophagy regulators during Group A streptococcus (GAS) infection. Rab9A was recruited to GAS-containing autophagosome-like vacuoles (GcAVs) after autophagosomal maturation and its activity was required for GcAV enlargement and eventual lysosomal fusion. GcAV enlargement appeared to be related to homotypic fusion of GcAVs with Rab9A. Rab23 was recruited to GAS-capturing forming autophagosomes. Knockdown of Rab23 expression decreased both LC3- and Atg5-positive GAS formation and caused the accumulation of LC3-positive structures that did not associate with intracellular GAS. It was suggested, therefore, that Rab23 is required for GcAV formation and is involved in GAS targeting of autophagic vacuoles. Furthermore, knockdown of Rab9A or Rab23 expression impaired the degradation of intracellular GAS. Therefore, our data reveal that the Rab9A and Rab23 GTPases play crucial roles in autophagy of GAS. However, neither Rab9A nor Rab23 were localized to starvation-induced autophagosomes. Not only Rab9A but also Rab23 was dispensable for starvation-induced autophagosome formation. These findings demonstrate that specific Rab proteins function at distinct steps during autophagy in response to GAS infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号