首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracellular Zn2+ activates the epithelial Na+ channel (ENaC) by relieving Na+ self-inhibition. However, a biphasic Zn2+ dose response was observed, suggesting that Zn2+ has dual effects on the channel (i.e. activating and inhibitory). To investigate the structural basis for this biphasic effect of Zn2+, we examined the effects of mutating the 10 extracellular His residues of mouse γENaC. Four mutations within the finger subdomain (γH193A, γH200A, γH202A, and γH239A) significantly reduced the maximal Zn2+ activation of the channel. Whereas γH193A, γH200A, and γH202A reduced the apparent affinity of the Zn2+ activating site, γH239A diminished Na+ self-inhibition and thus concealed the activating effects of Zn2+. Mutation of a His residue within the palm subdomain (γH88A) abolished the low-affinity Zn2+ inhibitory effect. Based on structural homology with acid-sensing ion channel 1, γAsp516 was predicted to be in close proximity to γHis88. Ala substitution of the residue (γD516A) blunted the inhibitory effect of Zn2+. Our results suggest that external Zn2+ regulates ENaC activity by binding to multiple extracellular sites within the γ-subunit, including (i) a high-affinity stimulatory site within the finger subdomain involving His193, His200, and His202 and (ii) a low-affinity Zn2+ inhibitory site within the palm subdomain that includes His88 and Asp516.  相似文献   

2.

Background and Aims

The proportion of serum carnosinase (CN-1) recognized by RYSK173 monoclonal antibody negatively correlates with CN-1 activity. We thus hypothesized that the epitope recognized by RYSK173 is accessible only in a catalytically incompetent conformation of the zinc dependent enzyme and we mapped its position in the CN-1 structure. Since patients with kidney failure are often deficient in zinc and other trace elements we also assessed the RYSK173 CN-1 proportion in serum of these patients and studied the influence of hemodialysis hereon in relation to Zn2+ and Cu2+ concentration during hemodialysis.

Methods and Results

Epitope mapping using myc-tagged CN-1 fragments and overlapping peptides revealed that the RYSK173 epitope directly contributes to the formation of the dinuclear Zn center in the catalytic domain of homodimeric CN-1. Binding of RYSK173 to CN-1 was however not influenced by addition of Zn2+ or Cu2+ to serum. In serum of healthy controls the proportion of CN-1 recognized by RYSK173 was significantly lower compared to end-stage renal disease (ESRD) patients (1.12 ± 0.17 vs. 1.56 ± 0.40% of total CN-1; p<0.001). During hemodialysis the relative proportion of RYSK173 CN-1 decreased in parallel with increased serum Zn2+ and Cu2+ concentrations after dialysis.

Conclusions

Our study clearly indicates that RYSK173 recognizes a sequence within the transition metal binding site of CN-1, thus supporting our hypothesis that metal binding to CN-1 masks the epitope. The CN-1 RYSK173 proportion appears overall increased in ESRD patients, yet it decreases during hemodialysis possibly as a consequence of a relative increase in transition metal bound enzyme.  相似文献   

3.
Mycobacterium tuberculosis virulence is highly metal‐dependent with metal availability modulating the shift from the dormant to active states of M. tuberculosis infection. Rv0045c from M. tuberculosis is a proposed metabolic serine hydrolase whose folded stability is dependent on divalent metal concentration. Herein, we measured the divalent metal inhibition profile of the enzymatic activity of Rv0045c and found specific divalent transition metal cations (Cu2+ ≥ Zn2+ > Ni2+ > Co2+) strongly inhibited its enzymatic activity. The metal cations bind allosterically, largely affecting values for k cat rather than K M. Removal of the artificial N‐terminal 6xHis‐tag did not change the metal‐dependent inhibition, indicating that the allosteric inhibition site is native to Rv0045c. To isolate the site of this allosteric regulation in Rv0045c, the structures of Rv0045c were determined at 1.8 Å and 2.0 Å resolution in the presence and absence of Zn2+ with each structure containing a previously unresolved dynamic loop spanning the binding pocket. Through the combination of structural analysis with and without zinc and targeted mutagenesis, this metal‐dependent inhibition was traced to multiple chelating residues (H202A/E204A) on a flexible loop, suggesting dynamic allosteric regulation of Rv0045c by divalent metals. Although serine hydrolases like Rv0045c are a large and diverse enzyme superfamily, this is the first structural confirmation of allosteric regulation of their enzymatic activity by divalent metals.  相似文献   

4.
Class B metallo-β-lactamases (MBLs) are Zn2+-dependent enzymes that catalyze the hydrolysis of β-lactam antibiotics to confer resistance in bacteria. Several problematic groups of MBLs belong to subclass B1, including the binuclear New Delhi MBL (NDM), Verona integrin-encoded MBL, and imipenemase-type enzymes, which are responsible for widespread antibiotic resistance. Aspergillomarasmine A (AMA) is a natural aminopolycarboxylic acid that functions as an effective inhibitor of class B1 MBLs. The precise mechanism of action of AMA is not thoroughly understood, but it is known to inactivate MBLs by removing one catalytic Zn2+ cofactor. We investigated the kinetics of MBL inactivation in detail and report that AMA is a selective Zn2+ scavenger that indirectly inactivates NDM-1 by encouraging the dissociation of a metal cofactor. To further investigate the mechanism in living bacteria, we used an active site probe and showed that AMA causes the loss of a Zn2+ ion from a low-affinity binding site of NDM-1. Zn2+-depleted NDM-1 is rapidly degraded, contributing to the efficacy of AMA as a β-lactam potentiator. However, MBLs with higher metal affinity and stability such as NDM-6 and imipenemase-7 exhibit greater tolerance to AMA. These results indicate that the mechanism of AMA is broadly applicable to diverse Zn2+ chelators and highlight that leveraging Zn2+ availability can influence the survival of MBL-producing bacteria when they are exposed to β-lactam antibiotics.  相似文献   

5.
The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified (αβ)2 family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 Å containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 Å. The functional enzyme resembles previously known α2 and α4 endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity.  相似文献   

6.
Purification and properties of α-d-mannosidase from jack-bean meal   总被引:1,自引:1,他引:0  
1. α-Mannosidase from jack-bean meal was purified 150-fold. β-N-Acetyl-glucosaminidase and β-galactosidase were removed from the preparation by treatment with pyridine. Zn2+ was added during the purification to stabilize the α-mannosidase. 2. At pH values below neutrality, α-mannosidase undergoes reversible spontaneous inactivation at a rate dependent on the temperature, the degree of dilution and the extent of purification. The enzyme is also subject to irreversible inactivation, which is prevented by the addition of albumin. 3. Reversible inactivation of α-mannosidase is accelerated by EDTA and reversed or prevented by Zn2+. Other cations, such as Co2+, Cd2+ and Cu2+, accelerate inactivation; an excess of Zn2+ again exerts a protective action, and so does EDTA in suitable concentration. 4. Neither Zn2+ nor EDTA has any marked effect in the assay of untreated enzyme. In an EDTA-treated preparation, however, Zn2+ reactivates the enzyme during assay. 5. It is postulated that α-mannosidase is a dissociable Zn2+–protein complex in which Zn2+ is essential for enzyme activity.  相似文献   

7.
W Maret 《Biochemistry》1989,28(26):9944-9949
The catalytic zinc atoms in class III (chi) alcohol dehydrogenase (ADH) and sorbitol dehydrogenase (SDH) from human liver have been specifically removed and replaced by cobalt(II) with a new ultrafiltration technique. The electronic absorption spectrum of class III cobalt ADH (epsiolon 638 = 870 M-1 cm-1) is nearly identical with those of active site substituted horse EE and human class I (beta 1 beta 1) cobalt ADH. Thus, the coordination environment of the catalytic metal is strictly conserved in these enzymes. However, significant differences are noted when the spectra of class III ADH-coenzyme complexes are compared to the corresponding spectra of the horse enzyme. The spectrum of class III ADH.NADH is split into three bands, centered at 680, 638, and 562 nm. The class III ADH.NAD+ species resembles the alkaline form of the corresponding horse enzyme complex but without exhibiting the pH dependence of the latter. These spectral changes underscore the role of the coenzymes in differentially fine tuning the catalytic metal for its particular function in each ADH. The noncatalytic zinc of class III ADH exchanges with cobalt at pH 7.0. While 9 residues out of 15 in the loop surrounding the noncatalytic zinc of class III ADH differ from those of the class I ADH, the electronic absorption spectra of cobalt in the noncatalytic metal site of class III ADH establish that the coordination environment of this site is conserved as well. The spectrum of cobalt SDH differs significantly from those of cobalt ADHs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 104 cal mol-1). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.  相似文献   

9.
Domain of Unknown Function 89 (DUF89) proteins are metal-dependent phosphohydrolases. Exemplary DUF89 enzymes differ in their metal and phosphosubstrate preferences. Here, we interrogated the activities and structures of two DUF89 paralogs from fission yeast—Duf89 and Duf8901. We find that Duf89 and Duf8901 are cobalt/nickel-dependent phosphohydrolases adept at hydrolyzing p-nitrophenylphosphate and PPi. Crystal structures of metal-free Duf89 and Co2+-bound Duf8901 disclosed two enzyme conformations that differed with respect to the position of a three-helix module, which is either oriented away from the active site in Duf89 or forms a lid over the active site in Duf8901. Lid closure results in a 16 Å movement of Duf8901 Asp195, vis-à-vis Asp199 in Duf89, that brings Asp195 into contact with an octahedrally coordinated cobalt. Reaction of Duf8901 with BeCl2 and NaF in the presence of divalent cations Co2+, Ni2+, or Zn2+ generated covalent Duf8901-(Asp248)–beryllium trifluoride (BeF3)•Co2+, Duf8901-(Asp248)–BeF3•Ni2+, or Duf8901-(Asp248)–BeF3•Zn2+ adducts, the structures of which suggest a two-step catalytic mechanism via formation and hydrolysis of an enzyme-(aspartyl)–phosphate intermediate. Alanine mutations of Duf8901 Asp248, Asn249, Lys401, Asp286, and Asp195 that interact with BeF3•Co2+ squelched p-nitrophenylphosphatase activity. A 1.8 Å structure of a Duf8901-(Asp248)–AlF4–OH2•Co2+ transition-state mimetic suggests an associative mechanism in which Asp195 and Asp363 orient and activate the water nucleophile. Whereas deletion of the duf89 gene elicited a phenotype in which expression of phosphate homeostasis gene pho1 was derepressed, deleting duf8901 did not, thereby hinting that the DUF89 paralogs have distinct functional repertoires in vivo.  相似文献   

10.
Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution.  相似文献   

11.
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s−1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9–13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.  相似文献   

12.
A new glucanolytic bacterial strain, SU40 was isolated, and identified as Bacillus subtilis on the basis of 16S rRNA sequence homology and phylogenetic tree analysis. The gene encoding β-1,3-1,4-glucanase was delineated, cloned into pET 28a+ vector and heterologously overexpressed in Escherichia coli BL21(DE3). The purified recombinant enzyme was about 24 kDa. The enzyme exhibited maximum activity (36.84 U/ml) at 60°C, pH 8.0 and maintained 54% activity at 80°C after incubation for 60 min. The enzyme showed activity against β-glucan, lichenan, and xylan. Amino acid sequence shared a conserved motif EIDIEF. The predicted three-dimensional homology model of the enzyme showed the presence of catalytic residues Glu105, Glu109 and Asp107, single disulphide bridge between Cys32 and Cys61 and three calcium binding site residues Pro9, Gly45 and Asp207. Presence of calcium ion improves the thermal stability of SU40 β-1,3-1,4-glucanase. Molecular dynamics simulation studies revealed that the absence of calcium ion fluctuate the active site residues which are responsible for thermostability. The high catalytic activity and its stability to temperature, pH and metal ions indicated that the enzyme β-1,3-1,4-glucanase by B. subtilis SU40 is a good candidate for biotechnological applications.  相似文献   

13.
We examined an idea that short-term cognition is transiently affected by a state of confusion in Zn2+ transport system due to a local increase in amyloid-β (Aβ) concentration. A single injection of Aβ (25 pmol) into the dentate gyrus affected dentate gyrus long-term potentiation (LTP) 1 h after the injection, but not 4 h after the injection. Simultaneously, 1-h memory of object recognition was affected when the training was performed 1 h after the injection, but not 4 h after the injection. Aβ-mediated impairments of LTP and memory were rescued in the presence of zinc chelators, suggesting that Zn2+ is involved in Aβ action. When Aβ was injected into the dentate gyrus, intracellular Zn2+ levels were increased only in the injected area in the dentate gyrus, suggesting that Aβ induces the influx of Zn2+ into cells in the injected area. When Aβ was added to hippocampal slices, Aβ did not increase intracellular Zn2+ levels in the dentate granule cell layer in ACSF without Zn2+, but in ACSF containing Zn2+. The increase in intracellular Zn2+ levels was inhibited in the presence of CaEDTA, an extracellular zinc chelator, but not in the presence of CNQX, an AMPA receptor antagonist. The present study indicates that Aβ-mediated Zn2+ influx into dentate granule cells, which may occur without AMPA receptor activation, transiently induces a short-term cognitive deficit. Extracellular Zn2+ may play a key role for transiently Aβ-induced cognition deficits.  相似文献   

14.
Bacillus circulans T-3040 cycloisomaltooligosaccharide glucanotransferase belongs to the glycoside hydrolase family 66 and catalyzes an intramolecular transglucosylation reaction that produces cycloisomaltooligosaccharides from dextran. The crystal structure of the core fragment from Ser-39 to Met-738 of B. circulans T-3040 cycloisomaltooligosaccharide glucanotransferase, devoid of its N-terminal signal peptide and C-terminal nonconserved regions, was determined. The structural model contained one catalytic (β/α)8-barrel domain and three β-domains. Domain N with an immunoglobulin-like β-sandwich fold was attached to the N terminus; domain C with a Greek key β-sandwich fold was located at the C terminus, and a carbohydrate-binding module family 35 (CBM35) β-jellyroll domain B was inserted between the 7th β-strand and the 7th α-helix of the catalytic domain A. The structures of the inactive catalytic nucleophile mutant enzyme complexed with isomaltohexaose, isomaltoheptaose, isomaltooctaose, and cycloisomaltooctaose revealed that the ligands bound in the catalytic cleft and the sugar-binding site of CBM35. Of these, isomaltooctaose bound in the catalytic site extended to the second sugar-binding site of CBM35, which acted as subsite −8, representing the enzyme·substrate complex when the enzyme produces cycloisomaltooctaose. The isomaltoheptaose and cycloisomaltooctaose bound in the catalytic cleft with a circular structure around Met-310, representing the enzyme·product complex. These structures collectively indicated that CBM35 functions in determining the size of the product, causing the predominant production of cycloisomaltooctaose by the enzyme. The canonical sugar-binding site of CBM35 bound the mid-part of isomaltooligosaccharides, indicating that the original function involved substrate binding required for efficient catalysis.  相似文献   

15.
LigD 3′-phosphoesterase (PE) enzymes perform end-healing reactions at DNA breaks. Here we characterize the 3′-ribonucleoside-resecting activity of Candidatus Korarchaeum PE. CkoPE prefers a single-stranded substrate versus a primer–template. Activity is abolished by vanadate (10 mM), but is less sensitive to phosphate (IC50 50 mM) or chloride (IC50 150 mM). The metal requirement is satisfied by manganese, cobalt, copper or cadmium, but not magnesium, calcium, nickel or zinc. Insights to CkoPE metal specificity were gained by solving new 1.5 Å crystal structures of CkoPE in complexes with Co2+ and Zn2+. His9, His15 and Asp17 coordinate cobalt in an octahedral complex that includes a phosphate anion, which is in turn coordinated by Arg19 and His51. The cobalt and phosphate positions and the atomic contacts in the active site are virtually identical to those in the CkoPE·Mn2+ structure. By contrast, Zn2+ binds in the active site in a tetrahedral complex, wherein the position, orientation and atomic contacts of the phosphate are shifted and its interaction with His51 is lost. We conclude that: (i) PE selectively binds to ‘soft’ metals in either productive or non-productive modes and (ii) PE catalysis depends acutely on proper metal and scissile phosphate geometry.  相似文献   

16.
New Delhi metallo-β-lactamase (NDM-1) is a new metallo-β-lactamase (MBL) that has recently emerged as a global threat because it confers bacteria with resistance to almost all clinically used β-lactam antibiotics. To determine the molecular basis of this threat, NDM-1 was purified from Escherichia coli TransB (DE3) carrying cloned blaNDM-1 gene by an anion-exchange chromatography step followed by a gel permeation chromatography step. The purified enzyme was stable even in extremely alkaline buffer (pH 11) and reached its highest activity at a low temperature (15°C), which was different from other MBLs. The 50% inhibition concentration of EDTA against NDM-1 was 412 nM, which showed that NDM-1 was more susceptible to EDTA than other MBLs. The effects of zinc on NDM-1 differed between cephem and carbapenem complexes, but inhibition at high Zn2+ concentration was observed for all of tested β-lactam compounds.  相似文献   

17.
SLC30A8 encodes a zinc transporter ZnT8 largely restricted to pancreatic islet β- and α-cells, and responsible for zinc accumulation into secretory granules. Although common SLC30A8 variants, believed to reduce ZnT8 activity, increase type 2 diabetes risk in humans, rare inactivating mutations are protective. To investigate the role of Slc30a8 in the control of glucagon secretion, Slc30a8 was inactivated selectively in α-cells by crossing mice with alleles floxed at exon 1 to animals expressing Cre recombinase under the pre-proglucagon promoter. Further crossing to Rosa26:tdRFP mice, and sorting of RFP+: glucagon+ cells from KO mice, revealed recombination in ∼30% of α-cells, of which ∼50% were ZnT8-negative (14 ± 1.8% of all α-cells). Although glucose and insulin tolerance were normal, female αZnT8KO mice required lower glucose infusion rates during hypoglycemic clamps and displayed enhanced glucagon release (p < 0.001) versus WT mice. Correspondingly, islets isolated from αZnT8KO mice secreted more glucagon at 1 mm glucose, but not 17 mm glucose, than WT controls (n = 5; p = 0.008). Although the expression of other ZnT family members was unchanged, cytoplasmic (n = 4 mice per genotype; p < 0.0001) and granular (n = 3, p < 0.01) free Zn2+ levels were significantly lower in KO α-cells versus control cells. In response to low glucose, the amplitude and frequency of intracellular Ca2+ increases were unchanged in α-cells of αZnT8KO KO mice. ZnT8 is thus important in a subset of α-cells for normal responses to hypoglycemia and acts via Ca2+-independent mechanisms.  相似文献   

18.
The divalent cation chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), often used to buffer physiological changes in cytosolic Ca2+, also binds Zn2+ with high affinity. In a recently published method (Lamboley et al. 2015. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201411250), the absorbance shift of BAPTA at 292 nm was successfully used to determine the total calcium concentrations of various skeletal muscle tissues. In the present study, we show that endogenous Zn2+ in rat skeletal muscle tissue can be unknowingly measured as “Ca2+,” unless appropriate measures are taken to eliminate Zn2+ interference. We analyzed two rat skeletal muscle tissues, soleus and plantaris, for total calcium and zinc using either inductively coupled plasma mass spectrometry (ICP-MS) or the BAPTA method described above. ICP-MS analysis showed that total zinc contents in soleus and plantaris were large enough to affect the determination of total calcium by the BAPTA method (calcium = 1.72 ± 0.31 and 1.96 ± 0.14, and zinc = 0.528 ± 0.04 and 0.192 ± 0.01; mean ± standard error of the mean [SEM]; n = 5; mmole/kg, respectively). We next analyzed total calcium using BAPTA but included the Zn2+-specific chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) that buffers Zn2+ without affecting Ca2+/BAPTA binding. We found that estimated concentrations of total calcium ([CaT]WM) in soleus and plantaris were reduced after TPEN addition ([CaT]WM = 3.71 ± 0.62 and 3.57 ± 0.64 without TPEN and 3.39 ± 0.64 and 3.42 ± 0.62 with TPEN; mean ± SEM; n = 3; mmole/kg, respectively). Thus, we show that a straightforward correction can be applied to the BAPTA method to improve the accuracy of the determination of total calcium that should be applicable to most any tissue studied. In addition, we show that using TPEN in combination with the BAPTA method allows one to make reasonable estimates of total zinc concentration that are in agreement with the direct determination of zinc concentration by ICP-MS.  相似文献   

19.
Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn2+ enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn2+ at pH 4.6–7.5. All four structures reveal three tetra-coordinated Zn2+-binding sites (ZBS 1–3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR. Zn2+ binding perturbs loop E-α-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases ∼5-fold in the presence of Zn2+. Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn2+. HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn2+ binding, although the α-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn2+, which is consistent with the tertiary structural perturbation provoked by Zn2+ binding, tetramer stability is only marginally affected by Zn2+. These data highlight structural and functional roles of Zn2+ in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.  相似文献   

20.
An enzyme that conjugates the 16α-hydroxyl group of oestriol with glucuronic acid was found in the cytosol fraction of human liver. The enzymic activity could not be sedimented when the cytosol fraction was centrifuged at 158000gav. for 120min. The oestriol 16α-glucuronyltransferase was purified 100-fold by 0–30% saturation of the cytosol fraction with ammonium sulphate followed by filtration of the precipitate through Sephadex G-200. The activity was eluted at the void volume. The product of the reaction, oestriol 16α-monoglucuronide, was identified by paper chromatography and by crystallization of radioactive product to constant specific radioactivity. The optimum temperature was 37°C, and the activation energy was calculated to be 11.1kcal/mol. The apparent Michaelis–Menten constants for oestriol and UDP-glucuronic acid were 13.3 and 100μm respectively. Cu2+, Zn2+ and Hg2+ inhibited, whereas Mg2+, Mn2+ and Fe2+ stimulated the enzyme. Substrate-specificity studies indicated that the amount of oestradiol-17β, oestradiol-17α and oestrone conjugated was not more than about 5% of that found for oestriol. Oestriol 16α-monoglucuronide, a product of the reaction, did not inhibit the 16α-oestriol glucuronyltransferase; in contrast, UDP, another product of the reaction, inhibited the enzyme competitively with respect to UDP-glucuronic acid as the substrate, and non-competitively with respect to oestriol as the substrate. ATP and UDP-N-acetylglucosamine did not affect the oestriol 16α-glucuronyltransferase. 17-Epioestriol acted as a competitive inhibitor and 16-epioestriol as a non-competitive inhibitor of the glucuronidation of oestriol. 5α-Pregnane-3α,20α-diol also inhibited the enzyme non-competitively. It is most likely that the oestriol 16α-glucuronyltransferase described here is bound to the membranes of the endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号