首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. Through the use of high throughput whole cell screening of an extensive compound library a number of imidazo[1,2-a]pyridine (IP) compounds were obtained as potent lead molecules active against M. tuberculosis and Mycobacterium bovis BCG. The IP inhibitors (1–4) demonstrated minimum inhibitory concentrations (MICs) in the range of 0.03 to 5 µM against a panel of M. tuberculosis strains. M. bovis BCG spontaneous resistant mutants were generated against IP 1, 3, and 4 at 5× MIC and subsequent whole genome sequencing identified a single nucleotide polymorphism 937ACC>937GCC (T313A) in qcrB, which encodes the b subunit of the electron transport ubiquinol cytochrome C reductase. This mutation also conferred cross-resistance against IP 1, 3 and 4 demonstrating a common target. Gene dosage experiments confirmed M. bovis BCG QcrB as the target where over-expression in M. bovis BCG led to an increase in MIC from 0.5 to >8 µM for IP 3. An acute murine model of TB infection established bacteriostatic activity of the IP series, which await further detailed characterization.  相似文献   

2.
Mycobacterium tuberculosis infects a third of the world''s population. Primary tuberculosis involving active fast bacterial replication is often followed by asymptomatic latent tuberculosis, which is characterised by slow or non-replicating bacteria. Reactivation of the latent infection involving a switch back to active bacterial replication can lead to post-primary transmissible tuberculosis. Mycobacterial mechanisms involved in slow growth or switching growth rate provide rational targets for the development of new drugs against persistent mycobacterial infection. Using chemostat culture to control growth rate, we screened a transposon mutant library by Transposon site hybridization (TraSH) selection to define the genetic requirements for slow and fast growth of Mycobacterium bovis (BCG) and for the requirements of switching growth rate. We identified 84 genes that are exclusively required for slow growth (69 hours doubling time) and 256 genes required for switching from slow to fast growth. To validate these findings we performed experiments using individual M. tuberculosis and M. bovis BCG knock out mutants. We have demonstrated that growth rate control is a carefully orchestrated process which requires a distinct set of genes encoding several virulence determinants, gene regulators, and metabolic enzymes. The mce1 locus appears to be a component of the switch to slow growth rate, which is consistent with the proposed role in virulence of M. tuberculosis. These results suggest novel perspectives for unravelling the mechanisms involved in the switch between acute and persistent TB infections and provide a means to study aspects of this important phenomenon in vitro.  相似文献   

3.
PCR primers specific for the Mycobacterium tuberculosis complex were used to detect the presence of Mycobacterium bovis BCG (Pasteur) in soil microcosms and Mycobacterium bovis in environmental samples taken from a farm in Ireland with a history of bovine tuberculosis. M. bovis genes were detected in soil at 4 and 21 months after possible contamination. Gene levels were found in the range of 1 × 103 to 3.6 × 103 gene copies g of soil−1, depending on the sampling area. Areas around badger setts had the highest levels of detectable genes and were shown to have the highest levels of gene persistence. M. bovis-specific 16S rRNA sequences were detected, providing evidence of the presence of viable cells in Irish soils. Studies of DNA turnover in soil microcosms proved that dead cells of M. bovis BCG did not persist beyond 10 days. Further microcosm experiments revealed that M. bovis BCG survival was optimal at 37°C with moist soil (−20 kPa; 30% [vol/wt]). This study provides clear evidence that M. bovis can persist in the farm environment outside of its hosts and that climatic factors influence survival rates.  相似文献   

4.
Strains of Mycobacterium bovis, M. bovis BCG, and M. tuberculosis, including a so-called Canetti strain, were analyzed by means of two-dimensional immunoelectrophoresis (2D-IE), 2D-IE combined with enzyme staining, and multilocus enzyme electrophoresis (MEE). The results demonstrated a close antigentic and enzymatic resemblance among all the strains tested, even though the BCG strains could be divided into two groups based on the presence of one precipitinogen. Eight of the precipitinogens were shown to correspond to enzymes in M. bovis BCG and 10 in M. tuberculosis. Thus, catalase, isocitrate dehydrogenase, malate dehydrogenase, peroxidase, and several others were identified. By means of MEE the strains of M. tuberculosis, M. bovis, and M. bovis BCG could be differentiated. The analyses further indicated that the M. tuberculosis strain Canetti was more closely related to M. bovis than to M. tuberculosis.  相似文献   

5.
Mycobacterium tuberculosis reduces nitrate very strongly as compared to Mycobacterium bovis and M. bovis BCG. Nitrate reductase, in conjunction with niacin accumulation, constitutes one of the major biochemical tests used in clinical microbiology laboratories to differentiate M. tuberculosis from other members of the M. tuberculosis complex, as well as nontuberculous Mycobacteria. Determination of nitrate reductase activity is currently performed using cultures grown on solid media with a slow detection time and the need for large quantities of bacilli, as otherwise the test is not reliable. Hereby, we propose a nitrate reduction test coupled to Bactec MGIT960 system as a simple, rapid and economic method with a total gain of time of about 3 to 4 weeks over the conventional solid medium. In our study, almost all the M. tuberculosis and Mycobacterium canettii strains gave a strongly positive nitrate reductase result within 1 day of positive detection by the MGIT960 system. In contrast, M. bovis, M. bovis BCG and M. africanum strains remained negative even after 14 days of incubation. The possibility to detect nitrate reductase within 1 to 3 days of a positive culture using MGIT960 opens new perspectives with the possibility of confirming M. tuberculosis — starting directly from pathological specimens.  相似文献   

6.
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.  相似文献   

7.
The human pathogen Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (TB), a disease with high worldwide mortality rates. Current treatment programs are under significant threat from multi-drug and extensively-drug resistant strains of M. tuberculosis, and it is essential to identify new inhibitors and their targets. We generated spontaneous resistant mutants in Mycobacterium bovis BCG in the presence of 10× the minimum inhibitory concentration (MIC) of compound 1, a previously identified potent inhibitor of mycobacterial growth in culture. Whole genome sequencing of two resistant mutants revealed in one case a single nucleotide polymorphism in the gene aspS at 535GAC>535AAC (D179N), while in the second mutant a single nucleotide polymorphism was identified upstream of the aspS promoter region. We probed whole cell target engagement by overexpressing either M. bovis BCG aspS or Mycobacterium smegmatis aspS, which resulted in a ten-fold and greater than ten-fold increase, respectively, of the MIC against compound 1. To analyse the impact of inhibitor 1 on M. tuberculosis AspS (Mt-AspS) activity we over-expressed, purified and characterised the kinetics of this enzyme using a robust tRNA-independent assay adapted to a high-throughput screening format. Finally, to aid hit-to-lead optimization, the crystal structure of apo M. smegmatis AspS was determined to a resolution of 2.4 Å.  相似文献   

8.
Most cases of tuberculosis are due to reactivation of endogenous infection which may have lain quiescent or dormant for decades. How Mycobacterium tuberculosis survives for this length of time is unknown, but it is hypothesized that reduced oxygen tension may trigger the tubercle bacillus to enter a state of dormancy. Mycobacterium bovis BCG and M. tuberculosis H37Rv were cultured under aerobic, microaerobic, and anaerobic conditions. Their ultrastructural morphology was analyzed by transmission electron microscopy (TEM), and protein expression profiles were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). TEM revealed that the microaerobically and anaerobically cultured bacilli but not the aerobically cultured bacilli developed a strikingly thickened cell wall outer layer. The thickening was not observed in aerobically cultured stationary-phase bacilli or in anaerobically cultured Mycobacterium smegmatis. A highly expressed protein was detected by SDS-PAGE in microaerobic and anaerobic cultures and was identified as the 16-kDa small heat shock protein or α-crystallin homolog. Immunolocalization by colloidal gold immunoelectron microscopy identified three patterns of protein distribution in M. bovis BCG cultured under low oxygen tension. The 16-kDa protein was strongly associated with the cell envelope, fibrous peptidoglycan-like structures, and intracellular and peripheral clusters. These results suggest that tubercle bacilli may adapt to low-oxygen conditions by developing a thickened cell wall and that the 16-kDa protein may play a role in stabilizing cell structures during long-term survival, thus helping the bacilli survive the low oxygen tension in granulomas. As such, the cell wall thickening and the 16-kDa protein may be markers for the dormant state of M. tuberculosis.  相似文献   

9.
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z′ factors were > 0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli.  相似文献   

10.
PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism.  相似文献   

11.
12.
13.
Identifying Mycobacterium tuberculosis membrane proteins involved in binding to and invasion of host cells is important in designing subunit-based anti-tuberculosis vaccines. The Rv2969c gene sequence was identified by PCR in M. tuberculosis complex strains, being transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra, and M. bovis BCG. Rabbits immunized with synthetic peptides from highly specific conserved regions of this protein produced antibodies recognizing 27 and 29 kDa bands in M. tuberculosis lysate, which is consistent with the molecular weight of the Rv2969c gene product in M. tuberculosis H37Rv. Immunoelectron microscopy revealed the protein was localized on the bacillus surface. Four and three specific high activity binding peptides (HABPs) to the A549 alveolar epithelial and U937 monocyte cell lines were found, respectively. Two of the HABPs found inhibited M. tuberculosis invasion of A549 cells, suggesting that these peptides might be good candidates to be included in a multiepitopic, subunit-based anti-tuberculosis vaccine.  相似文献   

14.
Experiments in the late 19th century sought to define the host specificity of the causative agents of tuberculosis in mammals. Mycobacterium tuberculosis, the human tubercle bacillus, was independently shown by Smith, Koch, and von Behring to be avirulent in cattle. This finding was erroneously used by Koch to argue the converse, namely that Mycobacterium bovis, the agent of bovine tuberculosis, was avirulent for man, a view that was subsequently discredited. However, reports in the literature of M. tuberculosis isolation from cattle with tuberculoid lesions suggests that the virulence of M. tuberculosis for cattle needs to be readdressed. We used an experimental bovine infection model to test the virulence of well-characterized strains of M. tuberculosis and M. bovis in cattle, choosing the genome-sequenced strains M. tuberculosis H37Rv and M. bovis 2122/97. Cattle were infected with approximately 106 CFU of M. tuberculosis H37Rv or M. bovis 2122/97, and sacrificed 17 weeks post-infection. IFN-γ and tuberculin skin tests indicated that both M. bovis 2122 and M. tuberculosis H37Rv were equally infective and triggered strong cell-mediated immune responses, albeit with some indication of differential antigen-specific responses. Postmortem examination revealed that while M. bovis 2122/97–infected animals all showed clear pathology indicative of bovine tuberculosis, the M. tuberculosis–infected animals showed no pathology. Culturing of infected tissues revealed that M. tuberculosis was able to persist in the majority of animals, albeit at relatively low bacillary loads. In revisiting the early work on host preference across the M. tuberculosis complex, we have shown M. tuberculosis H37Rv is avirulent for cattle, and propose that the immune status of the animal, or genotype of the infecting bacillus, may have significant bearing on the virulence of a strain for cattle. This work will serve as a baseline for future studies into the genetic basis of host preference, and in particular the molecular basis of virulence in M. bovis.  相似文献   

15.
Mycobacterium tuberculosis is one of the most successful pathogens known, having infected more than a third of the global population. An important strategy for intracellular survival of pathogenic mycobacteria relies on their capacity to resist delivery to lysosomes, instead surviving within macrophage phagosomes. Several factors of both mycobacterial and host origin have been implicated in this process. However, whether or not this strategy is employed in vivo is not clear. Here we show that in vivo, following intravenous infection, M. tuberculosis and Mycobacterium bovis BCG initially survived by resisting lysosomal transfer. However, after prolonged infection the bacteria were transferred to lysosomes yet continued to proliferate. A M. bovis BCG mutant lacking protein kinase G (PknG), that cannot avoid lysosomal transfer and is readily cleared in vitro, was found to survive and proliferate in vivo. The ability to survive and proliferate in lysosomal organelles in vivo was found to be due to an altered host environment rather than changes in the inherent ability of the bacteria to arrest phagosome maturation. Thus, within an infected host, both M. tuberculosis and M. bovis BCG adapts to infection-specific host responses. These results are important to understand the pathology of tuberculosis and may have implications for the development of effective strategies to combat tuberculosis.  相似文献   

16.
Bovine tuberculosis (bTB) is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.  相似文献   

17.
SigE represents one of the best characterized alternative sigma factors of Mycobacterium tuberculosis, playing a major role in the response to several environmental stresses and essential for growth in macrophages and virulence. In previous work we demonstrated that a mutant of M. tuberculosis in which the sigE gene was disrupted by a cassette conferring hygromycin resistance is a promising vaccine candidate conferring better protection than Mycobacterium bovis BCG in a mouse model of infection. In this work we describe the construction of a new unmarked mutant in which the entire sigE gene was disrupted in order to fulfill the requirements of the Geneva consensus to enter clinical trials. After showing that the phenotype of this mutant is superimposable to that of the previous one, we further characterized the role of SigE in the M tuberculosis intracellular behavior showing that it is dispensable for replication in human pneumocytes, while it is essential for the arrest of phagosome maturation in THP-1-derived macrophages.  相似文献   

18.
Mycobacterium tuberculosis complex (MTC) comprises a group of bacteria that have a high degree of genetic similarity. Two species in this group, Mycobacterium tuberculosis and Mycobacterium bovis, are the main cause of human and bovine tuberculosis, respectively. M. bovis has a broader host range that includes humans; thus, the differentiation of mycobacterium is of great importance for epidemiological and public health considerations and to optimize treatment. The current study aimed to evaluate primers and molecular markers described in the literature to differentiate M. bovis and M. tuberculosis by PCR. Primers JB21/22, frequently cited in scientific literature, presented in our study the highest number of errors to identify M. bovis or M. tuberculosis (73 %) and primers Mb.400, designed to flank region of difference 4 (RD4), were considered the most efficient (detected all M. bovis tested and did not detect any M. tuberculosis tested). Although also designed to flank RD4, primers Mb.115 misidentified eight samples due to primer design problems. The results showed that RD4 is the ideal region to differentiate M. bovis from other bacteria classified in MTC, but primer design should be considered carefully.  相似文献   

19.
Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vaccination strategy is urgently required. Boosting the BCG-induced immunity may offer a potentially advantageous strategy for advancing TB vaccine development, instead of replacing BCG completely. Despite the improved protection of the airway immunization by using live BCG, the use of live BCG as an airway boosting agent may evoke safety concerns. Here, we analyzed the protective efficacy of γ-irradiated BCG as a BCG-prime boosting agent for airway immunization against a hypervirulent clinical strain challenge with Mycobacterium tuberculosis HN878 in a mouse TB model. After the aerosol challenge with the HN878 strain, the mice vaccinated with BCG via the parenteral route exhibited only mild and transient protection, whereas BCG vaccination followed by multiple aerosolized boosting with γ-irradiated BCG efficiently maintained long-lasting control of Mtb in terms of bacterial reduction and pathological findings. Further immunological investigation revealed that this approach resulted in a significant increase in the cellular responses in terms of a robust expansion of antigen (PPD and Ag85A)-specific CD4+ T cells concomitantly producing IFN-γ, TNF-α, and IL-2, as well as a high level of IFN-γ-producing recall response via both the local and systemic immune systems upon further boosting. Collectively, aerosolized boosting of γ-irradiated BCG is able to elicit strong Th1-biased immune responses and confer enhanced protection against a hypervirulent Mycobacterium tuberculosis HN878 infection in a boosting number-dependent manner.  相似文献   

20.
Recently, several reports showed that about 80 % of mid-log phase Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG cells divide symmetrically with 5–10 % deviation in the septum position from the median. However, the mode of cell division of the pathogenic mycobacterial species, Mycobacterium tuberculosis, remained unclear. Therefore, in the present study, using electron microscopy, fluorescence microscopy of septum- and nucleoid-stained live and fixed cells, and live cell time-lapse imaging, we show the occurrence of asymmetric cell division with unusually deviated septum/constriction in 20 % of the 15 % septating M. tuberculosis cells in the mid-log phase population. The remaining 80 % of the 15 % septating cells divided symmetrically but with 2–5 % deviation in the septum/constriction position, as reported for M. smegmatis, M. marinum, and M. bovis BCG cells. Both the long and the short portions of the asymmetrically dividing M. tuberculosis cells with unusually deviated septum contained nucleoids, thereby generating viable short and long cells from each asymmetric division. M. tuberculosis short cells were acid fast positive and, like the long cells, further readily underwent growth and division to generate micro-colony, thereby showing that they were neither mini cells, spores nor dormant forms of mycobacteria. The freshly diagnosed pulmonary tuberculosis patients’ sputum samples, which are known for the prevalence of oxidative stress conditions, also contained short cells at the same proportion as that in the mid-log phase population. The probable physiological significance of the generation of the short cells through unusually deviated asymmetric cell division is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号