首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of G(i)-mediated signaling. CXCR7/CXCR4 co-expression also results in potentiation of CXCL12 (SDF-1)-mediated downstream β-arrestin-dependent cell signaling pathways, including ERK1/2, p38 MAPK, and SAPK as judged from the results of experiments using siRNA knockdown to deplete β-arrestin. Interestingly, CXCR7/CXCR4 co-expression enhances cell migration in response to CXCL12 stimulation. Again, inhibition of β-arrestin using either siRNA knockdown or a dominant negative mutant abrogates the enhanced CXCL12-dependent migration of CXCR4/CXCR7-expressing cells. These results show how CXCR7, which cannot signal directly through G protein-linked pathways, can nevertheless affect cellular signaling networks by forming a heteromeric complex with CXCR4. The CXCR4·CXCR7 heterodimer complex recruits β-arrestin, resulting in preferential activation of β-arrestin-linked signaling pathways over canonical G protein pathways. CXCL12-dependent signaling of CXCR4 and its role in cellular physiology, including cancer metastasis, should be evaluated in the context of potential functional hetero-oligomerization with CXCR7.  相似文献   

3.
Background Antibodies produced by B-lymphocytes play a key role in the host defense against infection. The development, survival, and activation of B cell is regulated by multiple receptors including the B cell antigen receptor (BCR), which detects the presence of pathogens, CD40, which binds co-stimulatory molecules on activated T cells, and chemokines such as SDF-1 (CXCL12) that play key roles in B cell development and trafficking. Signaling by many receptors results in the generation of reactive oxygen species (ROS) that function as second messengers by regulating the activity of redox-sensitive kinases and phosphatases. We investigated the role of ROS in signaling by the BCR, CD40, and CXCR4, the receptor for SDF-1. We focused on activation of ERK, JNK, p38, and Akt, kinases that regulate multiple processes including cell survival, proliferation, and migration. Results Using the anti-oxidants N-acetyl L-cysteine (NAC) and ebselen to deplete intracellular ROS, we identified a differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by these receptors. We found that CD40 activated JNK, p38, and Akt via redox-dependent pathways that were sensitive to ROS depletion by NAC and ebselen. In contrast, BCR-induced activation of ERK, JNK, p38, and Akt was not affected by ROS depletion. We also found that CXCR4-induced Akt activation was ROS-dependent even though activation of the ERK, JNK, and p38 MAP kinases by CXCR4 occurred via ROS-independent pathways. Conclusion The differential requirement for ROS in the activation of ERK, JNK, p38, and Akt by the BCR, CD40, and CXCR4 likely reflects the multiplicity of upstream activators for each of these kinases, only some of which may be regulated in a redox-dependent manner. These findings support the idea that ROS are important second messengers in B cells and suggest that oxidants or anti-oxidants could be used to modulate B cell activation.  相似文献   

4.
《Cellular signalling》2014,26(4):806-814
Toll-like receptor 2 (TLR2) is involved in phagocytosis and autophagy to enhance host innate immune response to bacterial infection. TLR2 has been reported to participate in the recognition of Staphylococcus aureus (S. aureus). However, the role of TLR2 in phagocytosis and autophagy in S. aureus-stimulated macrophages and the underlying mechanisms as yet remain unclear. In the present study, stimulation of mouse macrophage cell line RAW264.7 with S. aureus activated multiple signaling pathways including mitogen-activated protein kinases (MAPKs), myeloid differentiation factor 88 (MyD88), phosphatidylinositide 3-kinase (PI3K) and Rac1 and triggered autophagy process. Knockdown of TLR2 by siRNA significantly reduced phagocytosis and autophagy of macrophages upon S. aureus infection. Interestingly, TLR2 siRNA markedly attenuated S. aureus-induced phosphorylation of c-Jun N-terminal kinase (JNK) but not p38 or extracellular regulated protein kinase (ERK) in macrophages. Similarly, SP600125, a JNK inhibitor, also down-regulated phagocytosis and autophagy in S. aureus-stimulated macrophages. Furthermore, TLR2 siRNA and SP600125 simultaneous treatment showed similar phagocytosis and autophagy compared to that in TLR2 siRNA treatment alone. Collectively, our results indicate that TLR2 may be critical for phagocytosis and autophagy through JNK signaling pathway, and provide an underlying mechanistic link between innate immune receptor and induction of phagocytosis and autophagy in S. aureus-stimulated macrophages.  相似文献   

5.
The chemokine, SDF-1/CXCL12, and its receptor, CXCR4, have been implied to play major roles during limb myogenesis. This concept was recently challenged by the identification of CXCR7 as an alternative SDF-1 receptor, which can either act as a scavenger receptor, a modulator of CXCR4, or an active chemokine receptor. We have now re-examined this issue by determining whether SDF-1 would signal to C2C12 myoblasts and subsequently influence their differentiation via CXCR4 and/or CXCR7. In addition, we have analyzed CXCR7, CXCR4, and SDF-1 expression in developing and injured mouse limb muscles. We demonstrate that in undifferentiated C2C12 cells, SDF-1-dependent cell signaling and resulting inhibitory effects on myogenic differentiation are entirely mediated by CXCR4. We further demonstrate that CXCR7 expression increases in differentiating C2C12 cells, which in turn abrogates CXCR4 signaling. Moreover, consistent with the view that CXCR4 and CXCR7 control limb myogenesis in vivo by similar mechanisms, we found that CXCR4 expression is the highest in late embryonic hindlimb muscles and drops shortly after birth when secondary muscle growth terminates. Vice versa, CXCR7 expression increased perinatally and persisted into adult life. Finally, underscoring the role of the SDF-1 system in muscle regeneration, we observed that SDF-1 is continuously expressed by endomysial cells of postnatal and adult muscle fibers. Analysis of dystrophin-deficient mdx mice additionally revealed that muscle regeneration is associated with muscular re-expression of CXCR4. The apparent tight control of limb muscle development and regeneration by CXCR4 and CXCR7 points to these chemokine receptors as promising therapeutic targets for certain muscle disorders.  相似文献   

6.
The stromal cell-derived factor-1 (SDF-1) is a CXC chemokine, which plays critical roles in migration, proliferation, and differentiation of leukocytes. SDF-1 is the only known ligand of CXCR4, the coreceptor of X4 HIV strains. We show that SDF-1 binds to high- and low-affinity sites on HeLa cells. Coimmunoprecipitation studies demonstrate that glycanated and oligomerized syndecan-4 but neither syndecan-1, syndecan-2, betaglycan, nor CD44 forms complexes with SDF-1 and CXCR4 on these cells as well as on primary lymphocytes or macrophages. Moreover, biotinylated SDF-1 directly binds in a glycosaminoglycans (GAGs)-dependent manner to electroblotted syndecan-4, and colocalization of SDF-1 with syndecan-4 was visualized by confocal microscopy. Glycosaminidases pretreatment of the HeLa cells or the macrophages decreases the binding of syndecan-4 to the complex formed by it and SDF-1. In addition, this treatment also decreases the binding of the chemokine to CXCR4 on the primary macrophages but not on the HeLa cells. Therefore GAGs-dependent binding of SDF-1 to the cells facilitates SDF-1 binding to CXCR4 on primary macrophages but not on HeLa cell line. Finally, an SDF-1-independent heteromeric complex between syndecan-4 and CXCR4 was visualized on HeLa cells by confocal microscopy as well as by electron microscopy. Moreover, syndecan-4 from lymphocytes, monocyte derived-macrophages, and HeLa cells coimmunoprecipitated with CXCR4. This syndecan-4/CXCR4 complex is likely a functional unit involved in SDF-1 binding. The role of these interactions in the pathophysiology of SDF-1 deserves further study.  相似文献   

7.
Human mesenchymal stem cells (hMSCs) have been used for cell-based therapies in degenerative disease and as vehicles for delivering therapeutic genes to sites of injury and tumors. Recently, umbilical cord blood (UCB) was identified as a source for MSCs, and human UCB-derived MSCs (hUCB-MSCs) can serve as an alternative source of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, migration signaling pathways required for homing and recruitment of hUCB-MSCs are not fully understood. Stromal cell-derived factor-1 (SDF-1), a ligand for the CXCR4 chemokine receptor, plays a pivotal role in mobilization and homing of stem cells and modulates different biological responses in various stem cells. In this study, expression of CXCR4 in hUCB-MSCs was studied by western blot analysis and the functional role of SDF-1 was assessed. SDF-1 induced the migration of hUCB-MSCs in a dose-dependent manner. The induced migration was inhibited by the CXCR4-specific peptide antagonist (AMD3100) and by inhibitors of phosphoinositide 3-kinase (LY294002), mitogen-activated protein kinase/extracellular signal related kinase (PD98059) and p38MAPK inhibitor (SB203580). hUCB-MSCs treated with SDF-1 displayed increased phosphorylation of Akt, ERK and p38, which were inhibited by AMD3100. Small-interfering RNA-mediated knock-down of Akt, ERK and p38 blocked SDF-1 induced hUCB-MSC migration. In addition, SDF-1-induced actin polymerization was also blocked by these inhibitors. Taken together, these results demonstrate that Akt, ERK and p38 signal transduction pathways may be involved in SDF-1-mediated migration of hUCB-MSCs.  相似文献   

8.
9.
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.  相似文献   

10.
Quorum-sensing is an important mechanism for the regulation of bacteria-to-bacteria communication. Recent advances have demonstrated that the Pseudomonas aeruginosa signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone (3O-C(12)-HSL) is also a potent modulator of eukaryotic cells and may thus play an important role in the host response during P. aeruginosa infections. Little is known, however, about specific effects of 3O-C(12)-HSL molecules on human macrophages. To address this issue, we investigated the influence of 3O-C(12)-HSL on the phagocytic activity, production of reactive oxygen species, and activation of p38 and p42/44 MAPK signaling pathways in human macrophages. We show an effect of 3O-C(12)-HSL on the phagocytic capacity in human macrophages, which depends on concentration and time of exposure. When cells were exposed to 100 microM 3O-C(12)-HSL for 30 min or 1 h, the phagocytic activity increased 1.8 and 1.6 times, respectively. The 3O-C(12)-HSL treatments had no significant effect on the level of reactive oxygen species production. Furthermore, the p38 MAPK, but not the p42/44 MAPK, signaling pathway was activated in response to 3O-C(12)-HSL. In addition, specific blocking of p38 MAPK activation with 10 microM SB 203580 prevented the 3O-C(12)-HSL-induced increase in the phagocytic activity. These findings demonstrate that the bacterial quorum-sensing can play a significant role also in regulation of macrophage activity during infections caused by P. aeruginosa.  相似文献   

11.
Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic, calcium-binding, inflammation-responsive scaffold protein. Several studies have reported increased AIF-1 expression in activated macrophages and have implicated AIF-1 as a marker of activated macrophages. However, the function of AIF-1 in macrophages and the mechanism whereby it participates in macrophage activation are unknown at this time. Immunohistochemical analysis colocalized AIF-1 expression with CD68-positive macrophages in atherosclerotic human coronary arteries. Subsequent experiments were designed to determine a role for AIF-1 in macrophage activation in response to atherogenic stimuli. Stimulation of human and murine macrophages with oxidized LDL significantly increased AIF-1 expression above basal levels. Stable transfection of AIF-1 small interfering RNA (siRNA) in macrophages reduced AIF-1 protein expression by 79% and reduced macrophage proliferation by 52% (P < 0.01). Inhibition of proliferation was not due to induction of apoptosis. Sequences that did not knock down AIF-1 expression had no effect on proliferation. AIF-1 siRNA expression reduced macrophage migration by 60% (P < 0.01). Both proliferation and migration of siRNA-expressing macrophages could be restored by adenoviral expression of AIF-1 (P < 0.001 and 0.005, respectively), suggesting a tight association between AIF-1 expression and macrophage activation. Phosphorylation of Akt, p44/42 MAPK, and p38 kinase were significantly reduced in siRNA macrophages challenged with oxidized LDL (P < 0.05). Phosphorylation of p38 kinase was significantly inhibited in siRNA macrophages stimulated with T lymphocyte conditioned medium (P < 0.05). These data indicate that AIF-1 mediates atherogenesis-initiated signaling and activation of macrophages. allograft inflammatory factor-1; cell activation; small interfering RNA  相似文献   

12.
Chemokine receptors CXCR7 and CXCR4 bind to the same ligand stromal cell derived factor-1alpha (SDF-1α/CXCL12). We assessed the downstream signaling pathways mediated by CXCL12-CXCR7 interaction in Jurkat T cells. All experiments were carried out after functionally blocking the CXCR4 receptor. CXCL12, on binding CXCR7, induced phosphorylation of extra cellular regulated protein kinases (ERK 1/2) and Akt. Selective inhibition of each signal demonstrated that phosphorylated ERK 1/2 is essential for chemotaxis and survival of T cells whereas activation of Akt promotes only cell survival. Another interesting finding of this study is that CXCL12-CXCR7 interaction under normal physiological conditions does not activate the p38 pathway. Furthermore, we observed that the CXCL12 signaling via CXCR7 is Giα independent. Our findings suggest that CXCR7 promotes cell survival and does not induce cell death in T cells. The CXCL12 signaling via CXCR7 may be crucial in determining the fate of the activated T cells.  相似文献   

13.
Zhou L  Xue H  Wang Z  Ni J  Yao T  Huang Y  Yu C  Lu L 《Life sciences》2012,90(11-12):454-462
AimsThe kidney is an important target for both Angiotensin II and angiotensin-(1–7) [Ang-(1–7)] in the renin–angiotensin system. However, the renal function of Ang-(1–7) remains unclear. This study is aimed at investigating the effect of Ang-(1–7) on high glucose-induced epithelial to mesenchymal transition (EMT) in cultured renal epithelial cells.Main methodsCultured renal epithelial (NRK-52E) cell line was used in the experiment. Fluorescence immunocytochemistry was performed to observe α-smooth muscle actin (α-SMA). Real-time PCR and Western blot were used to determine mRNA and protein levels. Enzyme-linked immunosorbent assay was used to measure the concentration of transforming growth factor-β1 (TGF-β1) in the culture media.Key findingsHigh glucose-induced decreased in both angiotensin-converting enzyme-related carboxypeptidase (ACE2) and Mas mRNA levels. Meanwhile, high glucose induced increases in α-SMA and vimentin, decreases in E-cadherin, elevations in TGF-β1 and fibronectin secretions. Ang-(1–7) partially reversed high glucose-induced changes in α-SMA, vimentin, E-cadherin, TGF-β1 and fibronectin. High glucose stimulated ERK, p38 and JNK phosphorylation and Ang-(1–7) reversed the changes in ERK and p38 but not JNK phosphorylation.SignificanceInhibition and insufficiency in ACE2-Ang-(1–7)–Mas axis under high glucose condition participate EMT. Supplementation of Ang-(1–7) attenuates high glucose-induced EMT. ERK and p38 intracellular signaling pathways, not JNK, mediate the effect of Ang-(1–7) on EMT.  相似文献   

14.
In addition to their physiologic effects in inflammation and angiogenesis, chemokines are involved in cancer pathology. The aim of this study was to determine whether the chemokine stromal cell-derived factor 1 (SDF-1) induces the growth, migration, and invasion of human hepatoma cells. We show that SDF-1 G protein-coupled receptor, chemokine (C-X-C motif) receptor 4 (CXCR4), and SDF-1 mRNA are expressed in human hepatoma Huh7 cells, which secrete and bind SDF-1. This binding depends on CXCR4 and glycosaminoglycans. SDF-1 associates with CXCR4, and syndecan-4 (SDC-4), a heparan sulfate proteoglycan at the plasma membrane of Huh7 cells, induces the growth of Huh7 cells by promoting their entry into the cell cycle, and inhibits the tumor necrosis factor-alpha-mediated apoptosis of the cells. SDF-1 also reorganizes Huh7 cytoskeleton and induces tyrosine phosphorylation of focal adhesion kinase. Finally, SDF-1 activates matrix metalloproteinase-9, resulting in increased migration and invasion of Huh7 cells. These biological effects of SDF-1 were strongly inhibited by the CXCR4 antagonist AMD3100, by a glycosaminoglycan, heparin, as well as by beta-D-xyloside treatment of the cells, or by c-jun NH(2)-terminal kinase/stress-activated protein kinase inhibitor. Therefore, the CXCR4, glycosaminoglycans, and the mitogen-activated protein kinase signaling pathways are involved in these events. The fact that reducing SDC-4 expression by RNA interference decreased SDF-1-induced Huh7 hepatoma cell migration and invasion strongly indicates that SDC-4 may be an auxiliary receptor for SDF-1. Finally, the fact that CXCR4 is expressed in hepatocellular carcinoma cells from liver biopsies indicates that the in vitro results reported here could be extended to in vivo conditions.  相似文献   

15.
Zhang R  Pan X  Huang Z  Weber GF  Zhang G 《PloS one》2011,6(8):e23831

Background and Aims

Osteopontin, SDF-1α, and MMP-2 are important secreted molecules involved in the pathophysiology of human hepatocellular carcinoma (HCC). This study investigates the effect of the SDF-1α/CXCR4 axis on expression and activity of MMP-2 induced by osteopontin.

Methods

The expression of CXCR4, SDF-1α, MMP-2 and their associated cellular signaling cascades, involving Akt and MAP Kinases, were determined by Western blotting. The activities of MMP-2 and MMP-9 were assayed by gel zymography. The role of the osteopontin receptors integrin αvβ3 and CD44v6 was evaluated using neutralizing antibodies. We also established CXCR4-deficient SMMC7721 cell lines by transfection with miRNA-CXCR4 plasmids and determined cell invasion activity in a transwell assay.

Results

In comparison with untreated cells, recombinant human osteopontin (rhOPN) up-regulated CXCR4, SDF-1α, and MMP-2 expression about 5-, 4-, and 6-fold on the protein levels through binding to integrin αvβ3 and CD44v6 in hepatocellular carcinoma cells (SMMC7721 and HepG2). Inhibition of the SDF-1α/CXCR4 axis down-regulated the rhOPN-induced MMP-2 expression and activity. rhOPN also activated Akt, p38 and JNK. Down-regulation of CXCR4 decreased the rhOPN-induced invasion in SMMC7721 cells.

Conclusion

These results indicate that rhOPN up-regulates MMP-2 through the SDF-1α/CXCR4 axis, mediated by binding to integrin αvβ3 and CD44v6 and activating the PI-3K/Akt and JNK pathways in HepG2 and SMMC7721 cells. Therefore, the osteopontin-SDF-1α/CXCR4-MMP-2 system may be a new therapeutic target for treating HCC progression.  相似文献   

16.
CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-kappaB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.  相似文献   

17.
Heat shock protein (HSP) 27 has long been known to be a component of the p38 mitogen-activated protein kinase (MAPK) signaling pathway. p38 MAPK has important functions in the inflammatory response, but the role of HSP27 in inflammation has remained unknown. We have used small interfering RNAs to suppress HSP27 expression in HeLa cells and fibroblasts and found that it is required for pro-inflammatory cell signaling and the expression of pro-inflammatory genes. HSP27 is needed for the activation by interleukin (IL)-1 of TAK1 and downstream signaling by p38 MAPK, JNK, and their activators (MKK-3, -4, -6, -7) and IKKbeta. IL-1-induced ERK activation appears to be independent of HSP27. HSP27 is required for both IL-1 and TNF-induced signaling pathways for which the most upstream common signaling protein is TAK1. HSP27 is also required for IL-1-induced expression of the pro-inflammatory mediators, cyclooxygenase-2, IL-6, and IL-8. HSP27 functions to drive cyclooxygenase-2 and IL-6 expression by augmenting the activation of the kinase downstream of p38 MAPK, MK2, resulting in stabilization of cyclooxygenase-2 and IL-6 mRNAs. The mechanism may not occur in cells of myeloid lineage because HSP27 protein was undetectable in human monocytes and murine macrophages.  相似文献   

18.
19.
In this study, we examined how IL-8 induces leukocyte migration on major beta1 integrin ligands derived from the extracellular matrix protein fibronectin. We assessed individual contributions of signaling by IL-8 receptors by transfection of CXCR1 and CXCR2 into rat basophilic leukemia (RBL) cells and human monocytic THP-1 cells. CXCR1 expressing cells migrated on the fibronectin ligands for alpha4beta1 and alpha5beta1 integrins in response to IL-8, whereas CXCR2 expressing cells did not. RBL cells expressing the chimeric CXCR1 receptor containing the cytoplasmic tail of CXCR2 had greatly blunted migration, while cells expressing the CXCR2 chimera with the tail of CXCR1 had augmented migration. Last, inhibitors of p38 and JNK MAP kinases blocked IL-8-induced migration in CXCR1+ cells. We conclude that IL-8 stimulated beta1 integrin-mediated leukocyte migration on fibronectin through CXCR1 is dependent on the C-terminal cytoplasmic domain of CXCR1 and subsequent p38 and JNK MAPK signaling.  相似文献   

20.
Monocyte chemoattractant protein-1 (MCP-1) influences monocyte migration into sites of inflammation. This study highlights the importance of cytosolic phospholipase A2 (cPLA2)-mediated reactive oxygen species (ROS) signaling processes in the regulation of MCP-1 release as a result of toll-like receptor (TLR) activation. In macrophages, activation of TLR9 induced MCP-1 and cPLA2-phosphorylated arachidonic acid (AA) release. Inhibition of cPLA2 blocked CpG-induced MCP-1 and AA release. Although CpG stimulates phosphorylation of ERK, p38 and JNK, only inhibition of the JNK signaling pathways attenuated MCP-1 release, suggesting that the TLR9-mediated MCP-1 release was dependent upon the JNK pathway. TLR9 activation also stimulated ROS generation, while inhibition of NADPH oxidases (Noxs) blocked CpG-induced MCP-1 release. The CpG treatment increased macrophage Nox1 mRNA level, however it had no effect on macrophage Nox2 mRNA level. Overall, these results suggest that CpG enhances ROS generation through cPLA2-dependent pathways, which results in MCP-1 release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号