首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
New Delhi metallo-β-lactamase-1 gene (blaNDM-1) codes for New Delhi metallo-beta-lactamase-1 (NDM-1) enzyme that cleaves the amide bond of β-lactam ring, and provides resistance against major classes of β-lactam antibiotics. Dissemination of the plasmid borne blaNDM-1 through horizontal gene transfer is a potential threat to the society. In this study, a rapid non-culture method for detecting NDM-1 positive bacteria was developed by Loop Mediated Isothermal Amplification (LAMP) of blaNDM-1. Sensitivity of this method was found to be one femtogram of plasmid DNA, which translates into 2.6–25.8 copies depending on the size of the plasmid DNA. This method was applied to detect NDM-1 positive bacteria in 81 water samples that were collected from environmental and drinking water sources. NDM-1 positive bacteria were detected in three drinking water samples by LAMP but not by PCR. These three samples were collected from the water sources that were treated with chlorine for decontamination before public distribution. NDM-1 positive bacteria were not detected in lake water samples or in the samples that were collected from the water sources that were purified by reverse osmosis before public distribution. Detection of NDM-1 positive bacteria using LAMP was found to be safe, sensitive and rapid for screening large number of samples from diverse sources. This method could be developed as on-field detection kit by using fluorescent dyes to visualize the amplified blaNDM-1 gene.  相似文献   

2.
3.
New Delhi metallo-β-lactamase producing Pseudomonas aeruginosa isolates are of special interest since P. aeruginosa is a major cause of nosocomial infections, the treatment of which could now be jeopardized, especially in developing countries. Six additional NDM-1 positive P. aeruginosa clinical isolates belonging to two different genotypes were shown to be plasmid-free. PFGE-hybridization experiments revealed the chromosomal location of the bla NDM-1 gene. Restriction analysis and hybridization revealed that two copies of the bla NDM-1 gene are present in the genomes of all tested isolates, as in previously characterized P. aeruginosa MMA83. Moreover, it was shown that increasing imipenem concentration did not have the effect on copy number of the bla NDM-1 gene in the genome of P. aeruginosa MMA83.  相似文献   

4.
Repetitive element anchored PCR was used to evaluate the genetic profiles of Escherichia coli isolated from surface water contaminated with urban stormwater, sanitary sewage, and gull feces to determine if strains found in environmental samples reflect the strain composition of E. coli obtained from host sources. Overall, there was less diversity in isolates collected from river and beach sites than with isolates obtained from human and nonhuman sources. Unique strain types comprised 28.8, 29.2, and 15.0% of the isolate data sets recovered from stormwater, river water, and beach water, respectively. In contrast, 50.4% of gull isolates and 41.2% of sewage isolates were unique strain types. River water, which is expected to contain E. coli strains from many diffuse sources of nonpoint source pollution, contained strains most closely associated with other river water isolates that were collected at different sites or on different days. However, river sites impacted by sewage discharge had approximately 20% more strains similar to sewage isolates than did sites impacted by stormwater alone. Beach sites with known gull fecal contamination contained E. coli most similar to other beach isolates rather than gull isolates collected at these same sites, indicating underrepresentation of possible gull strains. These results suggest large numbers of strains are needed to represent contributing host sources within a geographical location. Additionally, environmental survival may influence the composition of strains that can be recovered from contaminated waters. Understanding the ecology of indicator bacteria is important when interpreting fecal pollution assessments and developing source detection methodology.  相似文献   

5.
The aim of the study was to determine the prevalence of New Delhi metallo-β lactamase-1 (NDM-1) producing Enterobacteriaceae in Kuwait over a one year period. Consecutive Enterobacteriaceae isolates with reduced susceptibility to carbapenems were collected from four government hospitals in Kuwait from January–December 2014. Their susceptibility to 18 antibiotics was performed by determining the minimum inhibitory concentration. Isolates resistant to carbapenems were tested by PCR for resistant genes. Finger printing of the positive isolates was done by DiversiLab®. Clinical data of patients harboring NDM-1 positive isolates were analyzed. A total of 764 clinically significant Enterobacteriaceae isolates were studied. Of these, 61 (8%) were carbapenem-resistant. Twenty one out of these 61 (34.4%) were NDM-1-producers. All patients positive for NDM-1-carrying bacteria were hospitalized. About half were females (11/21 [52.3%]), average age was 53.3 years and the majority were Kuwaitis (14/21 [66.6%]). Six patients (28.5%) gave a history of travel or healthcare contact in an endemic area. Mortality rate was relatively high (28.6%). The predominant organism was Klebsiella pneumoniae (14 [66.6%]) followed by E. coli (4 [19%]). All NDM-1-positive isolates were resistant to meropenem, ertapenem, cefotaxime, cefoxitin and ampicillin, while 95.2% were resistant to imipenem, cefepime, and piperacillin-tazobactam. They were multidrug resistant including resistance to tigecycline, but 90% remained susceptible to colistin. About two-thirds of isolates (61.9%) co-produced-extended spectrum β-lactamases. During the study period, an outbreak of NDM-1 positive K. pneumoniae occurred in one hospital involving 3 patients confirmed by DiversiLab® analysis. In conclusion, NDM-1-producing Enterobacteriaceae is a growing healthcare problem with increasing prevalence in Kuwait, especially in hospitalized patients, leaving few therapeutic options. A high prevalence of NDM-1 necessitates the implementation of strict infection control to prevent the spread of these organisms.  相似文献   

6.
Gram-negative ‘superbugs’ such as New Delhi metallo-beta-lactamase-1 (bla NDM-1) producing pathogens have become world’s major public health threats. Development of molecular strategies that can rehabilitate the ‘old antibiotics’ and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards bla NDM-1 Klebsiella pneumonia and bla NDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards bla NDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.  相似文献   

7.
In Europe the use of the growth promoter avoparcin is considered to have selected for vancomycin-resistant enterococci (VRE). Sweden ceased using avoparcin in 1986, and only occasional cases of VRE from hospitals have been reported since 1995. Within the framework of a European study, samples from urban raw sewage, treated sewage, surface water, and hospital sewage in Sweden (n = 118) were screened for VRE. Surprisingly, VRE were isolated from 21 of 35 untreated sewage samples (60%), from 5 of 14 hospital sewage samples (36%), from 6 of 32 treated sewage samples (19%), and from 1 of 37 surface water samples. Thirty-five isolates from 33 samples were further characterized by geno- and phenotyping, MIC determination, and PCR analysis. Most isolates (30 of 35) carried the vanA gene, and the majority (24 of 35) of the isolates were Enterococcus faecium. Most of the VRE were multiresistant. The typing revealed high diversity of the isolates. However, one major cluster with seven identical or similar isolates was found. These isolates came from three different sewage treatment plants and were collected at different occasions during 1 year. All VRE from hospital sewage originated from one of the two hospitals studied. That hospital also had vancomycin consumption that was 10-fold that of the other. We conclude that VRE were commonly found in sewage samples in Sweden. The origin might be both healthy individuals and individuals in hospitals. Possibly, antimicrobial drugs or chemicals released into the sewage system may sustain VRE in the system.  相似文献   

8.

Objectives

The study aimed to investigate the prevalence and epidemiological characteristics of bla NDM-1 (encoding New Delhi metallo-β-lactamase 1) in Enterobacteriaceae and the Acinetobacter calcoaceticus-Acinetobacter baumannii complex (ABC) in China from July 2011 to June 2012.

Methods

PCR was used to screen for the presence of bla NDM-1 in all organisms studied. For bla NDM-1-positive strains, 16S rRNA analysis and Analytical Profile Index (API) strips were used to identify the bacterial genus and species. The ABCs were reconfirmed by PCR detection of bla OXA-51-like. Antibiotic susceptibilities of the bacteria were assessed by determining minimum inhibitory concentration (MIC) of them using two-fold agar dilution test, as recommended by the Clinical and Laboratory Standards Institute (CLSI). Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) and Southern blot hybridization were conducted to ascertain the gene location of bla NDM-1. Conjugation experiments were conducted to determine the transmission of bla NDM-1-positive strains.

Results

Among 2,170 Enterobacteriaceae and 600 ABCs, seven Enterobacteriaceae strains and two A. calcoaceticus isolates from five different cities carried the bla NDM-1 gene. The seven Enterobacteriaceae strains comprised four Klebsiella pneumoniae, one Enterobacter cloacae, one Enterobacter aerogen and one Citrobacter freundii. All seven were non-susceptible to imipenem, meropenem or ertapenem. Two A. calcoaceticus species were resistant to imipenem and meropenem. Three K. pneumoniae showed the same PFGE profiles. The bla NDM-1 genes of eight strains were localized on plasmids, while one was chromosomal.

Conclusions

Compared with previous reports, the numbers and species containing the bla NDM-1 in Enterobacteriaceae have significantly increased in China. Most of them are able to disseminate the gene, which is cause for concern. Consecutive surveillance should be implemented and should also focus on the dissemination of bla NDM-1 among gram-negative clinical isolates.  相似文献   

9.
Global spread of KPC poses to be a serious threat complicating treatment options in hospital settings. The present study investigates the genetic environment of bla KPC-2 among clinical isolates of Pseudomonas aeruginosa from a tertiary referral hospital of India. The study isolates were collected from different wards and clinics of Silchar Medical College and Hospital, India, from 2012–2013. The presence of bla KPC was confirmed by genotypic characterization followed by sequencing. Cloning of the bla KPC-2 gene was performed and the genetic environment of this gene was characterized as well. Transferability of the resistance gene was determined by transformation assay and Southern hybridization. Additionally, restriction mapping was also carried out. Two isolates of P. aeruginosa were found to harbor bla KPC-2, were resistant towards aminoglycosides, quinolone and β-lactam-β-lactamase inhibitor combination. In both the isolates, the resistance determinant was associated with class 1 integron and horizontally transferable. Both the isolates were co-harboring bla NDM-1. The first detection of this integron mediated bla KPC-2 coexisting with bla NDM-1 in P. aeruginosa from India is worrisome, and further investigation is required to track the gene cassette mediated bla KPC-2 in terms of infection control and to prevent the spread of this gene in hospitals as well as in the community.  相似文献   

10.
The emergence and spread of NDM-1-producing Enterobacteriaceae have resulted in a worldwide public health risk that has affected some provinces of China. China is an exceptionally large country, and there is a crucial need to investigate the epidemic of bla NDM-1-positive Enterobacteriaceae in our province. A total of 186 carbapenem-resistant Enterobacteriaceae isolates (CRE) were collected in a grade-3 hospital in Zhejiang province. Carbapenem-resistant genes, including bla KPC, bla IMP, bla VIM, bla OXA-48 and bla NDM-1 were screened and sequenced. Ninety isolates were identified as harboring the bla KPC-2 genes, and five bla NDM-1-positive isolates were uncovered. XbaI-PFGE revealed that three bla NDM-1-positive K. pneumoniae isolates belonged to two different clones. S1-PFGE and southern blot suggested that the bla NDM-1 genes were located on IncX3-type plasmids with two different sizes ranging from 33.3 to 54.7 kb (n=4) and 104.5 to 138.9 kb (n=1), respectively, all of which could easily transfer to Escherichia coli by conjugation and electrotransformation. The high-throughput sequencing of two plasmids was performed leading to the identification of a smaller 54-kb plasmid, which had high sequence similarity with a previously reported pCFNDM-CN, and a larger plasmid in which only a 7.8-kb sequence of a common gene environment around bla NDM-1 (bla NDM-1-trpF- dsbC-cutA1-groELInsE,) was detected. PCR mapping and sequencing demonstrated that four smaller bla NDM-1 plasmids contained a common gene environment around bla NDM-1 (IS5-bla NDM-1-trpF- dsbC-cutA1-groEL). We monitored the CRE epidemic in our hospital and determined that KPC-2 carbapenemase was a major risk to patient health and the IncX3-type plasmid played a vital role in the spread of the bla NDM-1 gene among the CRE.  相似文献   

11.
The emergence of New Delhi metallo-β-lactamase 1 (NDM-1) has become established as a major public health threat and represents a new challenge in the treatment of infectious diseases. In this study, we report a high incidence and endemic spread of NDM-1-producing carbapenem-resistant Enterobacter cloacae isolates in Henan province, China. Eight (72.7%) out of eleven non-duplicated carbapenem-resistant E. cloacae isolates collected between June 2011 and May 2013 were identified as NDM-1 positive. The bla NDM-1 gene surrounded by an entire ISAba125 element and a bleomycin resistance gene ble MBL in these isolates were carried by diverse conjugatable plasmids (IncA/C, IncN, IncHI2 and untypeable) ranging from ~55 to ~360 kb. Molecular epidemiology analysis revealed that three NDM-1-producing E. cloacae belonged to the same multilocus sequence type (ST), ST120, two of which were classified as extensively drug-resistant (XDR) isolates susceptible only to tigecycline and colistin. The two XDR ST120 E. cloacae isolates co-harbored bla NDM-1, armA and fosA3 genes and could transfer resistance to carbapenems, fosfomycin and aminoglycosides simultaneously via a conjugation experiment. Our study demonstrated NDM-1 was the most prevalent metallo-β-lactamase (MBL) among carbapenem-resistant E.cloacae isolates and identified a potential endemic clone of ST120 in Henan province. These findings highlight the need for enhanced efforts to monitor the further spread of NDM-1 and XDR ST120 E. cloacae in this region.  相似文献   

12.
The superbug infection caused by New Delhi metallo-β-lactamase (NDM-1) has grown into an emerging threat, labelling and inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. Here, we report a potent covalent scaffold, ebsulfur, for targeting the protein in vitro and in vivo. Enzymatic kinetic study indicated that eighteen ebsulfurs gained except 1ab and 1f inhibited NDM-1, exhibiting an IC50 value ranging of 0.16–9 μM, and 1g was found to be the best, dose- and time-dependent inhibitor with an IC50 of 0.16 μM. Also, these ebsulfurs effectively restored the antibacterial activity of cefazolin against E. coli expressing NDM-1, and the best effect was observed to be from 1g, 1i and 1n, resulting in an 256-fold reduction in MIC of the antibiotic at a dose of 16 μg/mL. The equilibrium dialysis study implied that the ebsulfur disrupted the coordination of one Zn(II) ion at active site of NDM-1. Labelling of NDM-1 using a constructed fluorescent ebsulfur Ebs-R suggested that the inhibitor covalently bound to the target through SDS-PAGE analysis in vitro. Also, labelling NDM-1 in living E. coli cells with Ebs-R by confocal microscopic imaging showed the real-time distribution change process of intracellular recombinant protein NDM-1. Moreover, the cytotoxicity of these ebsulfurs against L929 mouse fibroblastic cells was tested, and their capability to restore antibacterial activity of antibiotic against clinical strains E. coli EC08 producing NDM-1 was determined. The ebsulfur scaffold proposed here is valuable for development of the covalent irreversible inhibitors of NDM-1, and also for labelling the target in vitro and in vivo.  相似文献   

13.
Treatment of neonatal sepsis has become a challenge with the emergence of carbapenemase-producing bacteria. This study documents the trend of carbapenem susceptibility in Enterobacteriaceae that caused septicaemia in neonates over a five year period (2007–2011) and the molecular characterisation of Enterobacteriaceae resistant to carbapenems and cephalosporins. Hundred and five Enterobacteriaceae including Escherichia coli (n = 27), Klebsiella pneumoniae (n = 68) and Enterobacter spp. (n = 10) were isolated from blood of septicaemic neonates followed by antibiotic susceptibility tests, determination of MIC values, phenotypic and genotypic detection of β-lactamases. Carbapenem was the most active antimicrobial tested after tigecycline. CTX-M type was the most prevalent ESBL throughout the period (82%). New Delhi Metallo-β-lactamase-1 (NDM-1), which is a recent addition to the carbapenemase list, was the only carbapenemase identified in our setting. Fourteen percent of the isolates possessed blaNDM-1. Carbapenem non-susceptibility was first observed in 2007 and it was due to loss of Omp F/Ompk36 in combination with the presence of ESBLs/AmpCs. NDM-1 first emerged in E. coli during 2008; later in 2010, the resistance was detected in K. pneumoniae and E. cloacae isolates. NDM-1-producing isolates were resistant to other broad-spectrum antibiotics and possessed ESBLs, AmpCs, 16S-rRNA methylases, AAC(6′)-Ib-cr, bleomycin resistant gene and class 1 integron. Pulsed field gel electrophoresis of the NDM-1-producing isolates indicated that the isolates were clonally diverse. The study also showed that there was a significantly higher incidence of sepsis caused by NDM-1-harbouring isolates in the male sex, in neonates with low birth weight and neonates born at an extramural centre. However, sepsis with NDM-1-harbouring isolates did not result in a higher mortality rate. The study is the first to review the carbapenem resistance patterns in neonatal sepsis over an extended period of time. The study highlights the persistence of ESBLs (CTX-Ms) and the emergence of NDM-1 in Enterobacteriaceae in the unit.  相似文献   

14.
The aim of the present study was to investigate the distribution of bacteria and detect the presence of quinolone resistance gene (qnrA) and integrons (intI1, intI2) in a habitat polluted by pharmaceutical sewage. The bacteria were isolated by nutrient agar and nutrient broth from waste water and sludge collected from the sewage outfall of a pharmaceutical factory. The bacteria were identified by Gram staining and biochemical tests, and the bacterial community diversity was analyzed by Shannon–Wiener diversity index (H), Pielou evenness index (J) and Simpson’s diversity index (D). The occurrence of qnrA and integrons (intI1, intI2) were detected by Real-time PCR assays. The results showed that 90 strains were isolated from water samples and sludge samples including 22 genera and 26 species. Types of bacteria in water samples contained 18 genera and 20 species, while 13 genera and 14 species were detected in sludge samples. Fifty-five Enterobacteriaceae isolates (61.11 %, 55 of 90) were the predominant bacteria in water and sludge samples. Bacterial species richness and evenness in water samples were higher than in sludge samples. The resistance genes of qnrA and integrons (intI1, intI2) with the total DNA and single isolate plasmid DNA were detected. There were a variety of bacterial species and the presence of qnrA and integrons (intI1, intI2) genes in pharmaceutical wastewater habitats, in which Enterobacteriaceae strains were the dominant bacteria. These results suggested that pharmaceutical wastewater had potential risks to public health.  相似文献   

15.
New Delhi metallo-β-lactamase-1 (NDM-1), an acquired class B carbapenemase, is a significant clinical threat due to its extended hydrolysis of β-lactams including carbapenems. In this study, we identified the first confirmed clinical isolate of Escherichia coli BJ01 harboring bla NDM-1 in China. The isolate is highly resistant to all tested antimicrobials except polymyxin. bla NDM-1, bla CTX-M-57, and bla TEM-1 were identified in the isolate. bla NDM-1 was transferable to E. coli EC600 and DH5α in both plasmid conjugation experiments and plasmid transformation tests. BJ01 was identified as a new sequence type, ST224, by multilocus sequence typing. Analysis of genetic environment shows complex transposon-like structures surrounding the bla NDM-1 gene. Genetic analysis revealed that the region flanking bla NDM-1 was very similar to previously identified NDM-positive Acinetobacter spp. isolated in China. The findings of this study raise attention to the emergence and spread of NDM-1-carrying Enterobacteriaceae in China.  相似文献   

16.
Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison.  相似文献   

17.
A variety of environment-associated gastrointestinal infections have been associated with the Aeromonas group of bacteria which contain both non-virulent strains as well as virulent strains within a particular species. This study monitors the colonization rates of colon tissue in a mouse-streptomycin dose/response model involving isolates of Aeromonas veronii biovar sobria obtained from human clinical specimens. The ability to successfully colonize mouse colon tissues by the human clinical isolates was then compared with the rates achieved in a previous study of Aeromonas isolates obtained from environmental drinking water samples. Results suggest that strains of Aeromonas isolated from drinking water environmental samples contain pathogenic and virulence capabilities similar to those seen in Aeromonas veronii clinical isolates from human infections.  相似文献   

18.
New Delhi metallo-β-lactamase-1 (NDM-1) is a recently identified metallo-β-lactamase that confers resistance to carbapenems and all other β-lactam antibiotics, with the exception of aztreonam. NDM-1 is also associated with resistance to many other classes of antibiotics. The enzyme was first identified in organisms isolated from a patient in Sweden who had previously received medical treatment in India, but it is now recognized as endemic throughout India and Pakistan and has spread worldwide. The gene encoding NDM-1 has been found predominantly in Escherichia coli and Klebsiella pneumoniae. We describe the isolation NDM-1–producing organisms from two patients in Toronto, Ontario. To the best of our knowledge, this is the first report of an organism producing NDM-1 that was locally acquired in Canada. We also discuss the evidence that NDM-1 can affect bacterial species other than E. coli and K. pneumoniae, the limited options for treatment and the difficulty laboratories face in detecting organisms that produce NDM-1.New Delhi metallo-β-lactamase-1 (NDM-1) is a metallo-β-lactamase that confers resistance to carbapenems and all other β-lactam antibiotics, with the exception of aztreonam. It is predominantly found in the Enterobacteriaeceae. It was first identified in Escherichia coli and Klebsiella pneumoniae isolated from a patient in Sweden who had previously received medical treatment in India. It is now recognized as endemic throughout India and Pakistan and has spread worldwide due to travel, “medical tourism” and the ability of the genetic element encoding the enzyme to transfer between bacteria.13 Three reports of organisms producing NDM-1 in Canada have been published to date. In each instance, the organisms were isolated from the urinary tracts of patients who had recently been admitted to hospitals in India. Two of the isolates were strains of K. pneumoniae and one was a strain of E. coli.46 Additional reports of isolation of organisms producing NDM-1 from patients in Canada have been presented in the lay press.Organisms that produce NDM-1 have been associated with resistance to classes of antibiotics other than the β-lactams, thus severely limiting options for treatment.2 Infection control guidance regarding the management of colonization by or infection with organisms that produce carbapenemases, such as NDM-1, have recently been published by Canadian and European authorities.79 An essential component of these recommendations is the rapid and accurate identification of the organisms in a clinical microbiology laboratory. The Clinical Laboratory Standards Institute (CLSI) and the United States Centers for Disease Control and Prevention (CDC) recommend screening for the production of carbapenemase using the Modified Hodge Test.10,11 If the result of that test is positive, then the presence and type of carbapenemase can be confirmed by polymerase chain reaction.4Herein, we summarize two additional instances in which organisms producing NDM-1 were isolated from patients in Canada and the first where the organism appears to have been acquired in Canada.  相似文献   

19.
Vancomycin-resistant enterococci (VRE) were detected in samples of sewage obtained downstream of hospitals of the Porto area in Portugal, and in samples from the Douro Estuary. Clonal analysis, Tn1546 typing, and presence of putative virulence traits indicate the clinical origin of these isolates. This observation highlights the importance of hospital sewage in the VRE contamination of the environment.  相似文献   

20.
Shiga toxin-producing Escherichia coli strains are human pathogens linked to hemorrhagic colitis and hemolytic uremic syndrome. The major virulence factors of these strains are Shiga toxins Stx1 and Stx2. The majority of the genes coding for these toxins are borne by bacteriophages. Free Stx2-encoding bacteriophages have been found in aquatic environments, but there is limited information about the lysogenic strains and bacteria present in the environment that are susceptible to phage infection. The aim of this work was to study the prevalence and the distribution of the stx2 gene in coliform bacteria in sewage samples of different origins. The presence of the stx2 gene was monitored every 2 weeks over a 1-year period in a municipal sewage treatment plant. A mean value of 102 genes/ml was observed without significant variation during the study period. This concentration was of the same order of magnitude in raw municipal sewage of various origins and in animal wastewater from several slaughterhouses. A total of 138 strains carrying the stx2 gene were isolated by colony hybridization. This procedure detected approximately 1 gene-carrying colony per 1,000 fecal coliform colonies in municipal sewage and around 1 gene-carrying colony per 100 fecal coliform colonies in animal wastewaters. Most of the isolates belonged to E. coli serotypes other than E. coli O157, suggesting a low prevalence of strains of this serotype carrying the stx2 gene in the wastewater studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号