共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiao-Lei Duan Na-Nv Liu Yan-Tao Yang Hai-Hong Li Ming Li Shuo-Xing Dou Xu-Guang Xi 《The Journal of biological chemistry》2015,290(12):7722-7735
The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation. 相似文献
2.
Manhong Guo Kristian Hundseth Hao Ding Venkatasubramanian Vidhyasagar Akira Inoue Chi-Hung Nguyen Rula Zain Jeremy S. Lee Yuliang Wu 《The Journal of biological chemistry》2015,290(8):5174-5189
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ−/− cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome. 相似文献
3.
RecD2 from Deinococcus radiodurans is a superfamily 1 DNA helicase that is homologous to the Escherichia coli RecD protein but functions outside the context of RecBCD enzyme. We report here on the kinetics of DNA unwinding by RecD2 under single and multiple turnover conditions. There is little unwinding of 20-bp substrates by preformed RecD2-dsDNA complexes when excess ssDNA is present to trap enzyme molecules not bound to the substrate. A shorter 12-bp substrate is unwound rapidly under single turnover conditions. The 12-bp unwinding reaction could be simulated with a mechanism in which the DNA is unwound in two kinetic steps with rate constant of kunw = 5.5 s−1 and a dissociation step from partially unwound DNA of koff = 1.9 s−1. These results indicate a kinetic step size of about 3–4 bp, unwinding rate of about 15–20 bp/s, and low processivity (p = 0.74). The reaction time courses with 20-bp substrates, determined under multiple turnover conditions, could be simulated with a four-step mechanism and rate constant values very similar to those for the 12-bp substrate. The results indicate that the faster unwinding of a DNA substrate with a forked end versus only a 5′-terminal single-stranded extension can be accounted for by a difference in the rate of enzyme binding to the DNA substrates. Analysis of reactions done with different RecD2 concentrations indicates that the enzyme forms an inactive dimer or other oligomer at high enzyme concentrations. RecD2 oligomers can be detected by glutaraldehyde cross-linking but not by size exclusion chromatography. 相似文献
4.
DNA sequences that can form intramolecular quadruplex structures are found in promoters of proto-oncogenes. Many of these sequences readily fold into parallel quadruplexes. Here we characterize the ability of yeast Pif1 to bind and unfold a parallel quadruplex DNA substrate. We found that Pif1 binds more tightly to the parallel quadruplex DNA than single-stranded DNA or tailed duplexes. However, Pif1 unwinding of duplexes occurs at a much faster rate than unfolding of a parallel intramolecular quadruplex. Pif1 readily unfolds a parallel quadruplex DNA substrate in a multiturnover reaction and also generates some product under single cycle conditions. The rate of ATP hydrolysis by Pif1 is reduced when bound to a parallel quadruplex compared with single-stranded DNA. ATP hydrolysis occurs at a faster rate than quadruplex unfolding, indicating that some ATP hydrolysis events are non-productive during unfolding of intramolecular parallel quadruplex DNA. However, product eventually accumulates at a slow rate. 相似文献
5.
Johnny Stiban Gregory A. Farnum Stacy L. Hovde Laurie S. Kaguni 《The Journal of biological chemistry》2014,289(35):24032-24042
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork. 相似文献
6.
Shubeena Chib Alicia K. Byrd Kevin D. Raney 《The Journal of biological chemistry》2016,291(11):5889-5901
Saccharomyces cerevisiae Pif1, an SF1B helicase, has been implicated in both mitochondrial and nuclear functions. Here we have characterized the preference of Pif1 for RNA:DNA heteroduplexes in vitro by investigating several kinetic parameters associated with unwinding. We show that the preferential unwinding of RNA:DNA hybrids is due to neither specific binding nor differences in the rate of strand separation. Instead, Pif1 is capable of unwinding RNA:DNA heteroduplexes with moderately greater processivity compared with its duplex DNA:DNA counterparts. This higher processivity of Pif1 is attributed to slower dissociation from RNA:DNA hybrids. Biologically, this preferential role of the helicase may contribute to its functions at both telomeric and nontelomeric sites. 相似文献
7.
Pike JE Henry RA Burgers PM Campbell JL Bambara RA 《The Journal of biological chemistry》2010,285(53):41712-41723
Two pathways have been proposed for eukaryotic Okazaki fragment RNA primer removal. Results presented here provide evidence for an alternative pathway. Primer extension by DNA polymerase δ (pol δ) displaces the downstream fragment into an RNA-initiated flap. Most flaps are cleaved by flap endonuclease 1 (FEN1) while short, and the remaining nicks joined in the first pathway. A small fraction escapes immediate FEN1 cleavage and is further lengthened by Pif1 helicase. Long flaps are bound by replication protein A (RPA), which inhibits FEN1. In the second pathway, Dna2 nuclease cleaves an RPA-bound flap and displaces RPA, leaving a short flap for FEN1. Pif1 flap lengthening creates a requirement for Dna2. This relationship should not have evolved unless Pif1 had an important role in fragment processing. In this study, biochemical reconstitution experiments were used to gain insight into this role. Pif1 did not promote synthesis through GC-rich sequences, which impede strand displacement. Pif1 was also unable to open fold-back flaps that are immune to cleavage by either FEN1 or Dna2 and cannot be bound by RPA. However, Pif1 working with pol δ readily unwound a full-length Okazaki fragment initiated by a fold-back flap. Additionally, a fold-back in the template slowed pol δ synthesis, so that the fragment could be removed before ligation to the lagging strand. These results suggest an alternative pathway in which Pif1 removes Okazaki fragments initiated by fold-back flaps in vivo. 相似文献
8.
The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS (CMG). The Dbf4-Cdc7 kinase phosphorylates Mcm2 in vitro, but the in vivo role for Dbf4-Cdc7 phosphorylation of Mcm2 is unclear. We find that budding yeast Dbf4-Cdc7 phosphorylates Mcm2 in vivo under normal conditions during S phase. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 confers a dominant-negative phenotype with a severe growth defect. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 under wild-type expression conditions also results in impaired DNA replication, substantially decreased single-stranded formation at an origin, and markedly disrupted interaction between GINS and Mcm2-7 during S phase. In vitro, Dbf4-Cdc7 kinase (DDK) phosphorylation of Mcm2 substantially weakens the interaction between Mcm2 and Mcm5, and Dbf4-Cdc7 phosphorylation of Mcm2 promotes Mcm2-7 ring opening. The extrusion of ssDNA from the central channel of Mcm2-7 triggers GINS attachment to Mcm2-7. Thus, Dbf4-Cdc7 phosphorylation of Mcm2 may open the Mcm2-7 ring at the Mcm2-Mcm5 interface, allowing for single-stranded DNA extrusion and subsequent GINS assembly with Mcm2-7. 相似文献
9.
Beiyu Liu Gokben Yildirir Jianyang Wang G?khan Tolun Jack D. Griffith Paul T. Englund 《The Journal of biological chemistry》2010,285(10):7056-7066
Kinetoplast DNA, the trypanosome mitochondrial genome, is a network of interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Minicircles replicate after release from the network, and their progeny reattach. Remarkably, trypanosomes have six mitochondrial DNA helicases related to yeast PIF1 helicase. Here we report that one of the six, TbPIF1, functions in minicircle replication. RNA interference (RNAi) of TbPIF1 causes a growth defect and kinetoplast DNA loss. Minicircle replication intermediates decrease during RNAi, and there is an accumulation of multiply interlocked, covalently closed minicircle dimers (fraction U). In studying the significance of fraction U, we found that this species also accumulates during RNAi of mitochondrial topoisomerase II. These data indicate that one function of TbPIF1 is an involvement, together with topoisomerase II, in the segregation of minicircle progeny. 相似文献
10.
Replicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is expressed in budding yeast cells exposed to hydroxyurea, cell growth is severely inhibited, and excess RPA accumulates at or near an origin. Chromatin immunoprecipitation suggests that helicase movement is uncoupled from polymerase movement for mutant cells exposed to hydroxyurea. These data suggest that Cdc45-ssDNA interaction is important for stalling the helicase during replication stress. 相似文献
11.
The highly conserved RecQ family of DNA helicases has multiple roles in the maintenance of genome stability. Sgs1, the single RecQ homologue in Saccharomyces cerevisiae, acts both early and late during homologous recombination. Here we present the expression, purification, and biochemical analysis of full-length Sgs1. Unlike the truncated form of Sgs1 characterized previously, full-length Sgs1 binds diverse single-stranded and double-stranded DNA substrates, including DNA duplexes with 5′- and 3′-single-stranded DNA overhangs. Similarly, Sgs1 unwinds a variety of DNA substrates, including blunt-ended duplex DNA. Significantly, a substrate containing a Holliday junction is unwound most efficiently. DNA unwinding is catalytic, requires ATP, and is stimulated by replication protein A. Unlike RecQ homologues from multicellular organisms, Sgs1 is remarkably active at picomolar concentrations and can efficiently unwind duplex DNA molecules as long as 23,000 base pairs. Our analysis shows that Sgs1 resembles Escherichia coli RecQ protein more than any of the human RecQ homologues with regard to its helicase activity. The full-length recombinant protein will be invaluable for further investigation of Sgs1 biochemistry. 相似文献
12.
Joshua A. Sommers Taraswi Banerjee Twila Hinds Bingbing Wan Marc S. Wold Ming Lei Robert M. Brosh Jr. 《The Journal of biological chemistry》2014,289(29):19928-19941
Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism. 相似文献
13.
Mazina OM Rossi MJ Deakyne JS Huang F Mazin AV 《The Journal of biological chemistry》2012,287(15):11820-11832
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination. 相似文献
14.
15.
In Saccharomyces cerevisiae, the key components of the nonhomologous end joining (NHEJ) pathway that repairs DNA double-strand breaks (DSBs) are yeast Ku (yKu), Mre11-Rad50-Xrs2, Dnl4-Lif1, and Nej1. Here, we examined the role of Nej1 in NHEJ by a combination of molecular genetic and biochemical approaches. As expected, the recruitment of Nej1 to in vivo DSBs is dependent upon yKu. Surprisingly, Nej1 is required for the stable binding of yKu to in vivo DSBs, in addition to Dnl4-Lif1. Thus, Nej1 and Dnl4-Lif1 are independently recruited by yKu to in vivo DSBs, forming a stable ternary complex that channels DSBs into the NHEJ pathway. In accord with these results, purified Nej1 interacts with yKu and preferentially binds to DNA ends bound by yKu. Furthermore, the binding of a mixture of Nej1 and Dnl4-Lif1 to DNA ends bound by yKu is greater than the sum of the binding of the individual proteins, indicating that pairwise interactions among yKu, Nej1, and Dnl4-Lif1 contribute to complex assembly at DNA ends. Nej1 stimulates intermolecular ligation by Dnl4-Lif1, but, more interestingly, the addition of Nej1 results in more than one intermolecular ligation per Dnl4 molecule. Thus, Nej1 not only plays an important role in determining repair pathway choice by participating in the initial NHEJ complex formed at DSBs but also contributes to the reactivation of Dnl4-Lif1 after repair is complete, thereby increasing the capacity of the NHEJ repair pathway. 相似文献
16.
The Gp59 protein of bacteriophage T4 plays critical roles in recombination-dependent DNA replication and repair by correctly loading the replicative helicase, Gp41, onto recombination intermediates. Previous work demonstrated that Gp59 is required to load helicase onto single-stranded DNA that is saturated with Gp32, the T4 single-stranded DNA (ssDNA)-binding protein. Gp59 and Gp32 bind simultaneously to ssDNA, forming a Gp59-Gp32-ssDNA complex that is a key intermediate in helicase loading. Here we characterize the assembly and dynamics of this helicase loading complex (HLC) through changes in the fluorescent states of Gp32F, a fluorescein-Gp32 conjugate. Results show that HLC formation requires a minimum Gp32-ssDNA cluster size and that Gp59 co-localizes with Gp32-ssDNA clusters in the presence of excess free ssDNA. These and other results indicate that Gp59 targets helicase assembly onto Gp32-ssDNA clusters that form on the displaced strand of D-loops, which suggests a mechanism for the rapid initiation of recombination-dependent DNA replication. Helicase loading at the HLC requires ATP binding (not hydrolysis) by Gp41 and results in local remodeling of Gp32 within the HLC. Subsequent ATPase-driven translocation of Gp41 progressively disrupts Gp32-ssDNA interactions. Evidence suggests that Gp59 from the HLC is recycled to promote multiple rounds of helicase assembly on Gp32-ssDNA, a capability that could be important for the restart of stalled replication forks. 相似文献
17.
Dolezal D Jones CE Lai X Brister JR Mueser TC Nossal NG Hinton DM 《The Journal of biological chemistry》2012,287(22):18596-18607
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB. 相似文献
18.
Joachim M. Gerhold Tiina Sedman Katarina Visacka Judita Slezakova Lubomir Tomaska Jozef Nosek Juhan Sedman 《The Journal of biological chemistry》2014,289(33):22659-22670
Variation in the topology of mitochondrial DNA (mtDNA) in eukaryotes evokes the question if differently structured DNAs are replicated by a common mechanism. RNA-primed DNA synthesis has been established as a mechanism for replicating the circular animal/mammalian mtDNA. In yeasts, circular mtDNA molecules were assumed to be templates for rolling circle DNA-replication. We recently showed that in Candida albicans, which has circular mapping mtDNA, recombination driven replication is a major mechanism for replicating a complex branched mtDNA network. Careful analyses of C. albicans-mtDNA did not reveal detectable amounts of circular DNA molecules. In the present study we addressed the question of how the unit sized linear mtDNA of Candida parapsilosis terminating at both ends with arrays of tandem repeats (mitochondrial telomeres) is replicated. Originally, we expected to find replication intermediates diagnostic of canonical bi-directional replication initiation at the centrally located bi-directional promoter region. However, we found that the linear mtDNA of Candida parapsilosis also employs recombination for replication initiation. The most striking findings were that the mitochondrial telomeres appear to be hot spots for recombination driven replication, and that stable RNA:DNA hybrids, with a potential role in mtDNA replication, are also present in the mtDNA preparations. 相似文献
19.
We analysed a one-dimensional random walk between two points when the migrating particle could be irreversibly lost (dissociated) from the system at each step of the process. We show that in the case of losses at each step the average number of steps made by the particle that reaches the final point does not obey quadratic dependence on the distance between the starting and the final points: for long distances this dependence is linear. This is because losses "select" for shorter pathways between the starting and the final points. We applied this analysis to protein translocations within long DNA molecules. 相似文献
20.
Tao Y Li X Liu Y Ruan J Qi S Niu L Teng M 《The Journal of biological chemistry》2012,287(24):20231-20239
The yeast Shu complex, consisting of the proteins Shu1, Shu2, Psy3, and Csm2, maintains genomic stability by coupling post-replication repair to homologous recombination. However, a lack of biochemical and structural information on the Shu proteins precludes revealing their precise roles within the pathway. Here, we report on the 1.9-Å crystal structure of the Psy3-Csm2 complex. The crystal structure shows that Psy3 forms a heterodimer with Csm2 mainly through a hydrophobic core. Unexpectedly, Psy3 and Csm2 share a similar architecture that closely resembles the ATPase core domain of Rad51. The L2 loop present in Psy3 and Csm2 is similar to that of Rad51 and confers the DNA binding activity of the Shu complex. As with Rad51, the Shu complex appears to form a nucleoprotein filament by binding nonspecifically to DNA. Structure-based mutagenesis studies have demonstrated that the DNA binding activity of the Shu complex is essential for repair of the methyl methanesulfonate-induced DNA damage. Our findings provide good foundations for the understanding of the Srs2 regulation by the Shu complex. 相似文献