首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

NLRP3 plays a role in sensing various pathogen components or stresses in the innate immune system. Once activated, NLRP3 associates with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and procaspase-1 to form a large protein complex termed inflammasome. Although some investigators have proposed a model of NLRP3-inflammasome containing an adaptor protein caspase recruitment domain-containing protein 8 (CARD8), the role of this molecule remains obscure. This study aimed to clarify the interaction between CARD8 and wild-type NLRP3 as well as mutant forms of NLRP3 linked with cryopyrin-associated periodic syndromes (CAPS).

Methods

In here HEK293 expression system, cells were transfected with the cDNAs for inflammasome components. Also used were peripheral blood mononuclear cells (PBMCs) and human monocyte-derived macrophages (HMDMs) from healthy volunteers. The interaction of CARD8 and NLRP3 was studied by immunoprecipitation. The effect of CARD8 expression on IL-1β secretion was assessed by ELISA. CARD8 knockdown experiments were carried out by transfection of the specific siRNA into HMDMs.

Results

In HEK293 cells, CARD8 interacted with wild-type NLRP3, but not with CAPS-associated mutant NLRP3. CARD8 significantly reduced IL-1β secretion from cells transfected with wild-type NLRP3, but not if they were transfected with mutant NLRP3. In addition, association of endogenously expressed CARD8 with NLRP3 was confirmed in resting PBMCs, and CARD8 knockdown resulted in higher amount of IL-1β secretion from HMDMs.

Conclusions

Until specific stimuli activate NLRP3, CARD8 holds NLRP3, and is supposed to prevent activation by subtle stimuli. However, CAPS-associated mutant NLRP3 is unable to bind with CARD8, which might be relevant to the pathogenesis of CAPS.  相似文献   

2.

Introduction

Activation of the inflammasome has been implicated in the pathology of various autoinflammatory and autoimmune diseases. While the NLRP3 inflammasome has been linked to arthritis progression, little is known about its synovial regulation or contribution to joint histopathology. Regulators of inflammation activation, such as interleukin (IL)-10, may have the potential to limit the inflammasome-driven arthritic disease course and associated structural damage. Hence, we used IL-10-deficient (IL-10KO) mice to assess NLRP3 inflammasome-driven arthritic pathology.

Methods

Antigen-induced arthritis (AIA) was established in IL-10KO mice and wild-type controls. Using histological and radiographic approaches together with quantitative real-time PCR of synovial mRNA studies, we explored the regulation of inflammasome components. These were combined with selective blocking agents and ex vivo investigative studies in osteoclast differentiation assays.

Results

In AIA, IL-10KO mice display severe disease with increased histological and radiographic joint scores. Here, focal bone erosions were associated with increased tartrate-resistant acid phosphatase (TRAP)-positive cells and a localized expression of IL-1β. When compared to controls, IL-10KO synovium showed increased expression of Il1b, Il33 and NLRP3 inflammasome components. Synovial Nlrp3 and Casp1 expression further correlated with Acp5 (encoding TRAP), while neutralization of IL-10 receptor signaling in control mice caused increased expression of Nlrp3 and Casp1. In ex vivo osteoclast differentiation assays, addition of exogenous IL-10 or selective blockade of the NLRP3 inflammasome inhibited osteoclastogenesis.

Conclusions

These data provide a link between IL-10, synovial regulation of the NLRP3 inflammasome and the degree of bone erosions observed in inflammatory arthritis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0419-y) contains supplementary material, which is available to authorized users.  相似文献   

3.

Introduction

Familial Mediterranean fever (FMF) is a hereditary autoinflammatory disease characterized by recurrent self-limiting fever and serositis that mainly affects Mediterranean populations. Many patients with FMF have been reported in Japan due to increasing recognition of this condition and the availability of genetic analysis for the gene responsible, MEFV. The present study was performed to elucidate the clinical characteristics of Japanese FMF patients and to examine the precise genotype-phenotype correlation in a large cohort of Japanese FMF patients.

Methods

We analyzed the MEFV genotypes and clinical manifestations in 116 patients clinically diagnosed as having FMF and with at least one mutation.

Results

The most frequent mutation in Japanese patients was E148Q (40.2%), followed by M694I (21.0%), L110P (18.8%), P369S (5.4%), and R408Q (5.4%). In contrast, common mutations seen in Mediterranean patients, such as M694V, V726A, and M680I, were not detected in this population. The clinical features with M694I were associated with more severe clinical course compared to those seen with E148Q. P369S/R408Q showed variable phenotypes with regard to both clinical manifestations and severity. Patients with M694I showed a very favorable response to colchicine therapy, while those with P369S and R408Q did not.

Conclusions

Clinical features and efficacy of treatment in Japanese FMF patients vary widely according to the specific MEFV gene mutation, and therefore genetic analysis should be performed for diagnosis in cases of Japanese FMF.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0439-7) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Mycoplasma hyorhinis (M.hyorhinis, M.hy) is associated with development of gastric and prostate cancers. The NLRP3 inflammasome, a protein complex controlling maturation of important pro-inflammatory cytokines interleukin (IL)-1β and IL-18, is also involved in tumorigenesis and metastasis of various cancers.

Methodology/Principal Findings

To clarify whether M.hy promoted tumor development via inflammasome activation, we analyzed monocytes for IL-1β and IL-18 production upon M.hy challenge. When exposed to M.hy, human monocytes exhibited rapid and robust IL-1β and IL-18 secretion. We further identified that lipid-associated membrane protein (LAMP) from M.hy was responsible for IL-1β induction. Applying competitive inhibitors, gene specific shRNA and gene targeted mice, we verified that M.hy induced IL-1β secretion was NLRP3-dependent in vitro and in vivo. Cathepsin B activity, K+ efflux, Ca2+ influx and ROS production were all required for the NLRP3 inflammasome activation by M.hy. Importantly, it is IL-1β but not IL-18 produced from macrophages challenged with M.hy promoted gastric cancer cell migration and invasion.

Conclusions

Our data suggest that activation of the NLRP3 inflammasome by M.hy may be associated with its promotion of gastric cancer metastasis, and anti-M.hy therapy or limiting NLRP3 signaling could be effective approach for control of gastric cancer progress.  相似文献   

5.

Background

Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is associated with metabolic disorder and cell death, which are important triggers in diabetic cardiomyopathy (DCM). We aimed to explore whether NLRP3 inflammasome activation contributes to DCM and the mechanism involved.

Methods

Type 2 diabetic rat model was induced by high fat diet and low dose streptozotocin. The characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Gene silencing therapy was used to investigate the role of NLRP3 in the pathogenesis of DCM. High glucose treated H9c2 cardiomyocytes were used to determine the mechanism by which NLRP3 modulated the DCM. The cell death in vitro was detected by TUNEL and EthD-III staining. TXNIP-siRNA and pharmacological inhibitors of ROS and NF-kB were used to explore the mechanism of NLRP3 inflammasome activation.

Results

Diabetic rats showed severe metabolic disorder, cardiac inflammation, cell death, disorganized ultrastructure, fibrosis and excessive activation of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, activated caspase-1 and mature interleukin-1β (IL-1β). Evidence for pyroptosis was found in vivo, and the caspase-1 dependent pyroptosis was found in vitro. Silencing of NLRP3 in vivo did not attenuate systemic metabolic disturbances. However, NLRP3 gene silencing therapy ameliorated cardiac inflammation, pyroptosis, fibrosis and cardiac function. Silencing of NLRP3 in H9c2 cardiomyocytes suppressed pyroptosis under high glucose. ROS inhibition markedly decreased nuclear factor-kB (NF-kB) phosphorylation, thioredoxin interacting/inhibiting protein (TXNIP), NLRP3 inflammasome, and mature IL-1β in high glucose treated H9c2 cells. Inhibition of NF-kB reduced the activation of NLRP3 inflammasome. TXNIP-siRNA decreased the activation of caspase-1 and IL-1β.

Conclusion

NLRP3 inflammasome contributed to the development of DCM. NF-κB and TXNIP mediated the ROS-induced caspase-1 and IL-1β activation, which are the effectors of NLRP3 inflammasome. NLRP3 gene silencing may exert a protective effect on DCM.  相似文献   

6.
7.

Background

Coal workers'' pneumoconiosis (CWP), resulting from the inhalation of silica-containing coal mine dust, is characterized by fibrosing nodular lesions that eventually develop into progressive pulmonary fibrosis. Recently, it has been hypothesized that inflammasomes could have a crucial role in the host response to silica and recent studies show that the inflammasome contributes to inflammation and pulmonary fibrosis. NLRP3, CARD8 are components of the NLRP3 inflammasome, which triggers caspase 1-mediated IL-1β and IL-18 release. In the present study, we investigated whether common single nucleotide polymorphisms (SNPs) in inflammasome genes are associated with CWP.

Methods

We performed an association study analyzing 3 NLRP3, 1 CARD8, 1 IL-1β, 2 IL-18 SNPs in a case-control study of 697 CWP and 694 controls. Genotyping was carried out by the TaqMan method.

Results

The NLRP3 rs1539019 TT genotype was associated with a significantly increased risk of CWP (adjusted odds ratio (OR) = 1.39, 95% confidence interval (CI) = 1.07–1.81), compared with the GG/GT genotype, in particular among smokers (adjusted OR = 1.67, 95%CI = 1.15–2.42). In addition, the polymorphism was significantly associated with risk of CWP patients with stage I.

Conclusions

This is the first report showing an association between the NLRP3 rs1539019 polymorphism and CWP, and suggests that this polymorphism may confer increased risk for the development of the disease. Further studies are warranted to confirm our findings.  相似文献   

8.

Background

The Q705K polymorphism in NLRP3 has been implicated in several chronic inflammatory diseases. In this study we determine the functional role of this commonly occurring polymorphism using an in-vitro system.

Principal Findings

NLRP3-WT and NLRP3-Q705K were retrovirally transduced into the human monocytic cell line THP-1, followed by the assessment of IL-1β and IL-18 levels in the cell culture supernatant. THP-1 cells expressing the above NLRP3 variants were sorted based upon Green Fluorescent Protein (GFP) expression. Cytokine response to alum (one of the most widely used adjuvants in vaccines) in the cells stably expressing NLRP3-WT and NLRP3-Q705K were determined. IL-1β and IL-18 levels were found to be elevated in THP-1 cells transduced with NLRP3-Q705K compared to the NLRP3-WT. Upon exposure to alum, THP-1 cells stably expressing NLRP3-Q705K displayed an increased release of IL-1β, IL-18 and TNF-α, in a caspase-1 and IL-1 receptor-dependent manner.

Conclusions

Collectively, these findings show that the Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to an overactive NLRP3 inflammasome. The option of IL-1β blockade may be considered in patients with chronic inflammatory disorders that are unresponsive to conventional treatments.  相似文献   

9.

Introduction

The majority of the genetic variance of systemic lupus erythematosus (SLE) remains unexplained by the common disease-common variant hypothesis. Rare variants, which are not detectable by genome-wide association studies because of their low frequencies, are predicted to explain part of this ”missing heritability.” However, recent studies identifying rare variants within known disease-susceptibility loci have failed to show genetic associations because of their extremely low frequencies, leading to the questioning of the contribution of rare variants to disease susceptibility. A common (minor allele frequency = 17.4% in cases) nonsynonymous coding variant rs1143679 (R77H) in ITGAM (CD11b), which forms half of the heterodimeric integrin receptor, complement receptor 3 (CR3), is robustly associated with SLE and has been shown to impair CR3-mediated phagocytosis.

Methods

We resequenced ITGAM in 73 SLE cases and identified two previously unidentified, case-specific nonsynonymous variants, F941V and G1145S. Both variants were genotyped in 2,107 and 949 additional SLE cases, respectively, to estimate their frequencies in a disease population. An in vitro model was used to assess the impact of F941V and G1145S, together with two nonsynonymous ITGAM polymorphisms, A858V (rs1143683) and M441T (rs11861251), on CR3-mediated phagocytosis. A paired two-tailed t test was used to compare the phagocytic capabilities of each variant with that of wild-type CR3.

Results

Both rare variants, F941V and G1145S, significantly impair CR3-mediated phagocytosis in an in vitro model (61% reduction, P = 0.006; 26% reduction, P = 0.0232). However, neither of the common variants, M441T and A858V, had an effect on phagocytosis. Neither rare variant was observed again in the genotyping of additional SLE cases, suggesting that there frequencies are extremely low.

Conclusions

Our results add further evidence to the functional importance of ITGAM in SLE pathogenesis through impaired phagocytosis. Additionally, this study provides a new example of the identification of rare variants in common-allele-associated loci, which, because of their extremely low frequencies, are not statistically associated. However, the demonstration of their functional effects adds support to their contribution to disease risk, and questions the current notion of dismissing the contribution of very rare variants on purely statistical analyses.  相似文献   

10.

Background

So far, all clinical cases of new variant Creutzfeldt-Jakob disease (vCJD), thought to result from the Bovine Spongiform Encephalopathy (BSE) prion agent, have shown Methionine–Methionine (M/M) homozygosity at the M129V polymorphism of the PRNP gene. Although established, this relationship is still not understood. In both vCJD and experimental BSE models prion agents do reach the bloodstream, raising concerns regarding disease transmission through blood transfusion.

Methodology/Principal Findings

We investigated the impact of the M129V polymorphism on the expression and processing of the prion protein in human peripheral blood mononuclear cells (PBMCs) from three blood donor populations with Methionine-Methionine (M/M), Valine-Valine (V/V) and M/V genotypes. Using real-time PCR, ELISA and immunoblot assays we were unable to find differences in prion protein expression and processing relating to the M129V polymorphism.

Conclusions/Significance

These results suggest that in PBMCs, the M129V PrP polymorphism has no significant impact on PrP expression, processing and the apparent glycoform distribution. Prion propagation should be investigated further in other cell types or tissues.  相似文献   

11.

Objectives

Muckle-Wells syndrome (MWS) is an autoinflammatory disease characterized by excessive interleukin-1 (IL-1) release, resulting in recurrent fevers, sensorineural hearing loss, and amyloidosis. IL-1 inhibition with anakinra, an IL-1 receptor antagonist, improves clinical symptoms and inflammatory markers. Subclinical disease activity is commonly observed. Canakinumab, a fully human IgG1 anti-IL-1β monoclonal antibody, can abolish excess IL-1β. The study aim was to analyze the efficacy and safety of these two anti-IL-1 therapies.

Methods

Two cohorts of patients with severe MWS and confirmed NLRP3 mutation were treated with anakinra and/or canakinumab. Clinical and laboratory features including ESR, CRP, SAA, and the neutrophil marker S100A12 were determined serially. Disease activity was captured by MWS disease activity scores (MWS-DAS). Remission was defined as MWS-DAS ≤5 plus normal CRP and SAA. Treatment efficacy and safety were analyzed.

Results

The study included 12 anakinra- and 14 canakinumab-treated patients; the median age was 33.5 years (3.0 years to 72.0 years); 57% were female patients. Both treatment regimens led to a significant reduction of clinical disease activity and inflammatory markers. At last follow-up, 75% of anakinra-treated and 93% of canakinumab-treated patients achieved remission. During follow-up, S100A12 levels mirrored recurrence of disease activity. Both treatment regimens had favorable safety profiles.

Conclusions

IL-1 blockade is an effective and safe treatment in MWS patients. MWS-DAS in combination with MWS inflammatory markers provides an excellent monitoring tool set. Canakinumab led to a sustained control of disease activity even after secondary failure of anakinra therapy. S100A12 may be a sensitive marker to detect subclinical disease activity.  相似文献   

12.

Background

Familial Mediterranean fever (FMF) is an autoinflammatory condition, which is characterized by acute, self-limiting episodes of fever and serositis and chronic subclinical inflammation in remission. Here we investigated the consequence of this condition on the level of systemic antibodies directed towards common intestinal bacteria.

Methodology/Principal Findings

The level of systemic antibodies towards the antigens of Bacteroides, Parabacteroides, Escherichia, Enteroccocus and Lactobaccilus was measured by ELISA in FMF patients at various stages of the disease and in healthy controls. The difference between remission and attack was not significant. IgG antibodies against the antigens of Bacteroides, Parabacteroides, Escherichia and Enteroccocus were significantly increased in FMF compared to control while IgA levels were not significantly affected. Western blot analyses demonstrated the IgG reactivity against multiple antigens of commensal bacteria in FMF. Serological expression cloning was performed to identify these antigens. No single dominant antigen was identified; the response was generalized and directed against a variety of proteins from Bacteroides, Parabacteroides, Escherichia, and other gut commensals.

Conclusions/Significance

This autoinflammatory syndrome is characterized by the increased systemic reactivity against commensal gut microbiota. This is probably the consequence of hypersensitivity of the inflammasome in FMF that triggers the inflammation and contributes to the excessive translocation of bacteria and bacterial antigens through the gut barrier.  相似文献   

13.

Background

T helper 17 cells (TH-17) represent a lineage of effector T cells critical in host defence and autoimmunity. In both mouse and human IL-1β has been indicated as a key cytokine for the commitment to TH-17 cells. Cryopyrin-associated periodic syndromes (CAPS) are a group of inflammatory diseases associated with mutations of the NLRP3 gene encoding the inflammasome component cryopyrin. In this work we asked whether the deregulated secretion of IL-1β secondary to mutations characterizing these patients could affect the IL-23/IL-17 axis.

Methodology/Principal Findings

A total of 11 CAPS, 26 systemic onset juvenile idiopathic arthritis (SoJIA) patients and 20 healthy controls were analyzed. Serum levels of IL-17 and IL-6 serum were assessed by ELISA assay. Frequency of TH17 cells was quantified upon staphylococcus enterotoxin B (SEB) stimulation. Secretion of IL-1β, IL-23 and IL-6 by monocyte derived dendritic cells (MoDCs), were quantified by ELISA assay. A total of 8 CAPS and 11 SoJIA patients were also analysed before and after treatment with IL-1β blockade. Untreated CAPS patients showed significantly increased IL-17 serum levels as well as a higher frequency of TH17 compared to control subjects. On the contrary, SoJIA patients displayed a frequency of TH17 similar to normal donors, but were found to have significantly increased serum level of IL-6 when compared to CAPS patients or healthy donors. Remarkably, decreased IL-17 serum levels and TH17 frequency were observed in CAPS patients following in vivo IL-1β blockade. On the same line, MoDCs from CAPS patients exhibited enhanced secretion of IL-1β and IL-23 upon TLRs stimulation, with a reduction after anti-IL-1 treatment.

Conclusion/Significance

These findings further support the central role of IL-1β in the differentiation of TH17 in human inflammatory conditions.  相似文献   

14.

Introduction

Monosodium urate (MSU) microcrystals present in bone tissues of chronic gout can be ingested by nonprofessional phagocytes like osteoblasts (OBs) that express NLRP3 (nucleotide-binding domain and leucine-rich repeat region containing family of receptor protein 3). MSU is known to activate NLRP3 inflammasomes in professional phagocytes. We have identified a new role for NLRP3 coupled to autophagy in MSU-stimulated human OBs.

Methods

Normal human OBs cultured in vitro were investigated for their capacity for phagocytosis of MSU microcrystals by using confocal microscopy. Subsequent mineralization and matrix metalloproteinase activity were evaluated, whereas regulatory events of phagocytosis were deciphered by using signaling inhibitors, phosphokinase arrays, and small interfering RNAs. Statistics were carried out by using paired or unpaired t tests, and the one-way ANOVA, followed by multiple comparison test.

Results

Most of the OBs internalized MSU in vacuoles. This process depends on signaling via PI3K, protein kinase C (PKC), and spleen tyrosine kinase (Syk), but is independent of Src kinases. Simultaneously, MSU decreases phosphorylation of the protein kinases TOR (target of rapamycin) and p70S6K. MSU activates the cleavage of microtubule-associated protein light chain 3 (LC3)-I into LC3-II, and MSU microcrystals are coated with GFP-tagged LC3. However, MSU-stimulated autophagy in OBs absolutely requires the phagocytosis process. We find that MSU upregulates NLRP3, which positively controls the formation of MSU-autophagosomes in OBs. MSU does not increase death and late apoptosis of OBs, but reduces their proliferation in parallel to decreasing their competence for mineralization and to increasing their matrix metalloproteinase activity.

Conclusions

MSU microcrystals, found locally encrusted in the bone matrix of chronic gout, activate phagocytosis and NLRP3-dependent autophagy in OBs, but remain intact in permanent autophagosomes while deregulating OB functions.  相似文献   

15.

Background

Increased rates of autoinflammatory and autoimmune disorders have been observed in female premutation carriers of CGG repeat expansion alleles of between 55–200 repeats in the fragile X mental retardation 1 (FMR1) gene. To determine whether an abnormal immune profile was present at a cellular level that may predispose female carriers to autoinflammatory conditions, we investigated dynamic cytokine production following stimulation of blood cells. In addition, splenocyte responses were examined in an FMR1 CGG knock-in mouse model of the fragile X premutation.

Methods

Human monocyte and peripheral blood leukocytes (PBLs) were isolated from the blood of 36 female FMR1 premutation carriers and 15 age-matched controls. Cells were cultured with media alone, LPS or PHA. In the animal model, splenocytes were isolated from 32 CGG knock-in mice and 32 wild type littermates. Splenocytes were cultured with media alone or LPS or PMA/Ionomycin. Concentrations of cytokines (GM-CSF, IL-1β, IL-6, IL-10, IL-13, IL-17, IFNγ, TNFα, and MCP-1) were determined from the supernatants of cellular cultures via Luminex multiplex assay. Additionally, phenotypic cellular markers were assessed on cells isolated from human subjects via flow cytometry.

Results

We found decreases in cytokine production in human premutation carriers as well as in the FMR1 knock-in mice when compared with controls. Levels of cytokines were found to be associated with CGG repeat length in both human and mouse. Furthermore, T cells from human premutation carriers showed decreases in cell surface markers of activation when compared with controls.

Conclusions

In this study, FMR1 CGG repeat expansions are associated with decreased immune responses and immune dysregulation in both humans and mice. Deficits in immune responses in female premutation carriers may lead to increased susceptibility to autoimmunity and further research is warranted to determine the link between FMR1 CGG repeat lengths and onset of autoinflammatory conditions.  相似文献   

16.

Introduction

Arthritis is the most frequent manifestation of Blau syndrome, an autoinflammatory disorder caused by the genetic mutation of NOD2. However, detailed information on arthritis in Blau syndrome on which the therapeutic strategy should be based on is lacking. This multi-center study aimed to accurately characterize the articular manifestation of Blau syndrome and also to demonstrate the utility of musculoskeletal ultrasound in Blau syndrome.

Methods

Patients who had been diagnosed with Blau syndrome by genetic analysis of NOD2 were recruited. A total of 102 synovial sites in 40 joints were assessed semiquantitatively by ultrasound for gray-scale synovitis and synovial power Doppler (PD) signal.

Results

In total, 10 patients whose age ranged from 10 months to 37 years enrolled in this study. Although only 4 joints (0.8%) were tender on physical examination, 81 joints (16.9%) were clinically swollen. Moreover, 240 (50.0%), and 124 (25.8%) joints showed gray-scale (GS) synovitis and synovial PD signal on ultrasound, respectively. Importantly, GS synovitis was present in 168 out of 399 non-swollen joints, in which 61 also exhibited synovial PD signal. Among 40 joint regions, the ankle, the wrist, and the proximal interphalangeal joints were the most frequently and severely affected joints. Comparisons between different synovial tissues demonstrated a significantly higher proportion of the joints with tenosynovitis as compared with that with intra-articular synovitis (41.5% versus 27.9%, P < 0.0001). In respect of age and treatment, synovial PD signals were minimal in the youngest patient and in the oldest two patients, and were relatively mild in patients receiving treatment with methotrexate plus TNF antagonists. In two patients who underwent the second ultrasound examination, total PD scores markedly decreased after initiating the treatment with a tumor necrosis factor (TNF) antagonist.

Conclusions

The detailed information on synovial inflammation obtained by ultrasound confirms the dissociation between pain and inflammation and the frequently involved joint regions and synovial tissue in the arthritis of Blau syndrome. Our data also demonstrate that ultrasonography can be a potent tool in monitoring the activity of synovial inflammation and in investigating the pathophysiology of arthritis in this rare but archetypical autoinflammatory condition.  相似文献   

17.

Background

Sudden cardiac death (SCD) is the clinical outcome of a lethal arrhythmia that can develop on the background of unrecognized channelopathies or cardiomyopathies. Several susceptibility genes have been identified for the congenital forms of these cardiac diseases, including caveolin-3 (Cav-3) gene. In the heart Cav-3 is the main component of caveolae, plasma membrane domains that regulate multiple cellular processes highly relevant for cardiac excitability, such as trafficking, calcium homeostasis, signal transduction and cellular response to injury. Here we characterized a new putative Cav-3 variant, Cav-3 V82I, found in a patient with SCD.

Results

In heterologous systems Cav-3 V82I was expressed at significantly higher level than Cav-3 WT and accumulated within the cells. Cells expressing Cav-3 V82I exhibited a decreased activation of extracellular-signal-regulated kinases (ERKs) and were more vulnerable to sub-lethal osmotic stress.

Conclusion

Considering that abnormal loss of myocytes can play a mechanistic role in lethal cardiac diseases, we suggest that the detrimental effect of Cav-3 V82I variant on cell viability may participate in determining the susceptibility to cardiac death.  相似文献   

18.
Gu D  Wang M  Wang S  Zhang Z  Chen J 《PloS one》2011,6(12):e28971

Background

Apurinic/apyrimidinic endonuclease 1 (APE1) has a central role in the repair of apurinic apyrimidic sites through both its endonuclease and its phosphodiesterase activities. A common APE1 polymorphism, T1349G (rs3136820), was previously shown to be associated with the risk of cancers.

Objective

We hypothesized that the APE1 T1349G polymorphism is also associated with risk of gastric cancer.

Methods

In a hospital-based case-control study of 338 case patients with newly diagnosed gastric cancer and 362 cancer-free controls frequency-matched by age and sex, we genotyped the T1349G polymorphism and assessed its associations with risk of gastric cancer.

Results

Compared with the APE1 TT genotype, individuals with the variant TG/GG genotypes had a significantly increased risk of gastric cancer (odds ratio = 1.69, 95% confidence interval = 1.19–2.40), which was more pronounced among subgroups of aged ≤60 years, male, ever smokers, and ever drinkers. Further analyses revealed that the variant genotypes were associated with an increased risk for diffuse-type, low depth of tumor infiltration (T1 and T2), and lymph node metastasis gastric cancer.

Conclusions

The APE1 T1349G polymorphism may be a marker for the development of gastric cancer in the Chinese population. Larger studies are required to validate these findings in diverse populations.  相似文献   

19.

Background

Interleukin-1β (IL-1β) is important for host resistance against Mycobacterium tuberculosis (Mtb) infections. The response of the dendritic cell inflammasome during Mtb infections has not been investigated in detail.

Methodology/Principal Findings

Here we show that Mtb infection of bone marrow-derived dendritic cells (BMDCs) induces IL-1β secretion and that this induction is dependent upon the presence of functional ASC and NLRP3 but not NLRC4 or NOD2. The analysis of cell death induction in BMDCs derived from these knock-out mice revealed the important induction of host cell apoptosis but not necrosis, pyroptosis or pyronecrosis. Furthermore, NLRP3 inflammasome activation and apoptosis induction were both reduced in BMDCs infected with the esxA deletion mutant of Mtb demonstrating the importance of a functional ESX-1 secretion system. Surprisingly, caspase-1/11-deficient BMDCs still secreted residual levels of IL-1βand IL-18 upon Mtb infection which was abolished in cells infected with the esxA Mtb mutant.

Conclusion

Altogether we demonstrate the partially caspase-1/11-independent, but NLRP3- and ASC- dependent IL-1β secretion in Mtb-infected BMDCs. These findings point towards a potential role of DCs in the host innate immune response to mycobacterial infections via their capacity to induce IL-1β and IL-18 secretion.  相似文献   

20.

Background & Aims

Primary sclerosing cholangitis predominantly affects males and is an important indication for liver transplantation. The rs738409 variant (I148M) of the PNPLA3 gene is associated with alcoholic and non-alcoholic liver disease and we evaluated its impact on the disease course of PSC.

Methods

The I148M polymorphism was genotyped in 121 German PSC patients of a long-term prospective cohort and 347 Norwegian PSC patients.

Results

In the prospective German cohort, actuarial survival free of liver transplantation was significantly reduced for I148M carriers (p = 0.011) compared to wildtype patients. This effect was restricted to patients with severe disease, as defined by development of dominant stenosis (DS) requiring endoscopic intervention. DS patients showed markedly decreased survival (p = 0.004) when carrying the I148M variant (I148M: mean 13.8 years; 95% confidence interval: 11.6–16.0 vs. wildtype: mean 18.6 years; 95% confidence interval: 16.3–20.9) while there was no impact on survival in patients without a DS (p = 0.87). In line with previous observations of sex specific effects of the I148M polymorphism, the effect on survival was further restricted to male patients (mean survival 11.9 years; 95% confidence interval: 10.0–14.0 in I148M carriers vs. 18.8 years; 95% confidence interval: 16.2–21.5 in wildtype; p<0.001) while female patients were unaffected by the polymorphism (p = 0.65). These sex specific findings were validated in the Norwegian cohort (p = 0.013).

Conclusions

In male PSC patients with severe disease with bile duct stenosis requiring intervention, the common I148M variant of the PNPLA3 gene is a risk factor for reduced survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号