首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI.  相似文献   

2.
Patients having the nephrogenic syndrome of inappropriate antidiuresis present either the R137C or R137L V2 mutated receptor. While the clinical features have been characterized, the molecular mechanisms of functioning of these two mutants remain elusive. In the present study, we compare the pharmacological properties of R137C and R137L mutants with the wild-type and the V2 D136A receptor, the latter being reported as a highly constitutively active receptor. We have performed binding studies, second messenger measurements and BRET experiments in order to evaluate the affinities of the ligands, their agonist and antagonist properties and the ability of the receptors to recruit β-arrestins, respectively. The R137C and R137L receptors exhibit small constitutive activities regarding the Gs protein activation. In addition, these two mutants induce a constitutive β-arrestin recruitment. Of interest, they also exhibit weak sensitivities to agonist and to inverse agonist in term of Gs protein coupling and β-arrestin recruitment. The small constitutive activities of the mutants and the weak regulation of their functioning by agonist suggest a poor ability of the antidiuretic function to be adapted to the external stimuli, giving to the environmental factors an importance which can explain some of the phenotypic variability in patients having NSIAD.  相似文献   

3.
The gene responsible for familial vasopressin-resistant nephrogenic diabetes insipidus (NDI) has been localized to a small region of the human X-chromosome (Xq28). A series of hamster lung fibroblast and mouse lymphocyte cell lines carrying fragments of the wild type human X-chromosome was analyzed for vasopressin renal-type V2 receptor expression, to test the hypothesis that the NDI locus may have identity with the V2 receptor gene. V2 receptor binding activity and induction of cAMP production in response to [Arg8] vasopressin (AVP) were exhibited by all cell lines carrying the wild type NDI locus, in contrast to control cell lines. AVP stimulation of cAMP production was concentration-dependent and could be almost completely inhibited by co-incubation with a V2-V1 receptor-specific antagonist. The V2-specific agonist [Mpa1,Val4,Sar7]AVP was as potent as AVP in inducing cAMP production by NDI-DNA-carrying cells, whereas no response was shown to other hormones such as calcitonin, oxytocin (less than 10(-8) M), isoproterenol, or an oxytocin-specific agonist. All results were consistent with the hypothesis that the V2 receptor gene co-localized with the NDI locus, supporting the view that the loci are one and the same.  相似文献   

4.
To understand the mechanisms of G protein-coupled receptor delivery and steady state localization, we examined the trafficking itineraries of wild type (WT) and mutant V2 vasopressin receptors (V2Rs) in polarized Madin-Darby canine kidney II (MDCK II) cells and in COS M6 cells; the mutant V2Rs represent selected alleles responsible for X-linked nephrogenic diabetes insipidus. The WT V2R is localized on the plasma membrane and mediates arginine vasopressin (AVP)-stimulated cAMP accumulation, whereas the clinically relevant V2R mutants, L292P V2R, Delta V278 V2R, and R337X V2R, are retained intracellularly, are insensitive to extracellularly added AVP, and are not processed beyond initial immature glycosylation, manifest by their endoglycosidase H sensitivity. Reduced temperature and pharmacological, but not chemical, strategies rescue mutant V2Rs to the cell surface of COS M6 cells; surface rescue of L292P V2R and R337X V2R, but not of Delta V278 V2R, parallels acquisition of AVP-stimulated cAMP production. Pharmacological rescue of the L292P or R337X V2R by incubation with the membrane-permeant V2R antagonist, SR121463B, leads to a mature glycosylated form of the receptor that achieves localization on the basolateral surface of polarized MDCK II cells indistinguishable from that of the WT V2R. Surprisingly, however, the immature form of the mutant L292P V2R escapes to the apical, but not basolateral, surface of polarized MDCK II cells, even in the absence of SR121463B. These findings are consistent with the interpretation that the receptor conformation that allows appropriate processing through the N-linked glycosylation pathway is also essential for V2R targeting to the appropriate surface of polarized epithelial cells.  相似文献   

5.
The G protein-coupled vasopressin V2 receptor (V2 receptor) contains a pair of conserved cysteine residues (C112 and C192) which are thought to form a disulfide bond between the first and second extracellular loops. The conserved cysteine residues were found to be important for the correct formation of the ligand binding domain of some G protein-coupled receptors. Here we have assessed the properties of the V2 receptor after site-directed mutagenesis of its conserved cysteine residues in transiently transfected human embryonic kidney (HEK 293) cells. Mutant receptors (C112S, C112A and C192S, C192A) were non-functional and located mostly in the cell's interior. The conserved cysteine residues of the V2 receptor are thus not only important for the structure of the ligand binding domain but also for efficient intracellular receptor transport. In addition to the functional significance of the conserved cysteine residues, we have also analyzed the defects of two mutant V2 receptors which cause X-linked nephrogenic diabetes insipidus (NDI) by the introduction of additional cysteine residues into the second extracellular loop (mutants G185C, R202C). These mutations are assumed to impair normal disulfide bond formation. Mutant receptor G185C and R202C were efficiently transported to the plasma membrane but were defective in ligand binding. Only in the case of the mutant receptor R202C, the more sensitive adenylyl cyclase activity assay revealed vasopressin-stimulated cAMP formation with a 35-fold increased EC(50) value and with a reduced EC(max), indicating that ligand binding is not completely abolished. Taking the unaffected intracellular transport of both NDI-causing mutant receptors into account, our results indicate that the observed impairment of ligand binding by the additional cysteine residues is not due to the prevention of disulfide bond formation between the conserved cysteine residues.  相似文献   

6.
The reported data for compound screening with the bioluminescence resonance energy transfer (BRET2) assay is very limited, and several questions remain unaddressed, such as the behavior of agonists. Eleven beta2 adrenergic receptor (beta2-AR) agonists were tested for full or partial agonism in an improved version of the receptor/beta-arrestin2 BRET2 assay and in 2 cyclic adenosine monophosphate (cAMP) assays (column cAMP assay and ALPHAscreen cAMP assay). Tested in the highly sensitive ALPHAscreen cAMP assay, all selected agonists behaved as full agonists, using isoproterenol as a reference compound. In the less sensitive column cAMP assay, ephedrine and dopamine had a clear partial response. For the BRET2 assay, a highly graded picture was obtained. Moreover, beta2-AR antagonists were tested for inverse agonism. Pronounced inverse agonism was detected in the ALPHAscreen cAMP assay. Only marginal inverse agonistic responses were seen for alprenolol and pindolol in the column cAMP assay, and no inverse agonism was seen in the BRET2 assay. For the beta2-AR, the BRET2 assay may be superior for secondary screening of agonists where a separation of full and partial agonists is needed and the ALPHAscreen cAMP assay may be preferred for primary screening of agonists where all receptor activating compounds are desired.  相似文献   

7.
Mutations in the gene of the G protein-coupled vasopressin V2 receptor (V2 receptor) cause X-linked nephrogenic diabetes insipidus (NDI). Most of the missense mutations on the extracellular face of the receptor introduce additional cysteine residues. Several groups have proposed that these residues might disrupt the conserved disulfide bond of the V2 receptor. To test this hypothesis, we first calculated a structure model of the extracellular receptor domains. The model suggests that the additional cysteine residues may form a second disulfide bond with the free, nonconserved extracellular cysteine residue Cys-195 rather than impairing the conserved bond. To address this question experimentally, we used the NDI-causing mutant receptors G185C and R202C. Their Cys-195 residues were replaced by alanine to eliminate the hypothetical second disulfide bonds. This second site mutation led to functional rescue of both NDI-causing mutant receptors, strongly suggesting that the second disulfide bonds are indeed formed. Furthermore we show that residue Cys-195, which is sensitive to "additional cysteine" mutations, is not conserved among the V2 receptors of other species and that the presence of an uneven number of extracellular cysteine residues, as in the human V2 receptor, is rare among class I G protein-coupled receptors.  相似文献   

8.
Y Terashima  K Kondo  Y Oiso 《Life sciences》1999,64(16):1447-1453
Oxytocin (OT) binds to the vasopressin V2 receptor (V2R) because of its structural similarity to arginine vasopressin (AVP). Though the affinity of OT for V2R is low, it is known that OT causes antidiuresis. To clarify the effect of OT as an agonist of V2R, we investigated the influence of acute elevation of plasma OT levels on the rat mRNA expression of V2R and aquaporin-2 (AQP2), the water channel regulated by V2R. The plasma OT level increased from 11.1+/-1.6 pg/ml to 331.0+/-67.9 pg/ml by 1 h after subcutaneousinjection of 20 microg OT. V2R mRNA expression decreased to 68.3+/-4.1% of the control at 3 h, and AQP2 mRNA expression increased to 239.3+/-26.8% of the control at 6 h. The plasma AVP level did not change significantly during the experiment. The influence of a subcutaneous injection of 20 microg OT on V2R and AQP2 mRNA expression is comparable to that of 10 microg AVP that we documented in the previous study. In conclusion, OT can downregulate V2R mRNA expression and upregulate AQP2 mRNA expression in the collecting duct as an agonist of the V2R like AVP.  相似文献   

9.
Nephrogenic diabetes insipidus (NDI) is an inherited disorder characterized by renal resistance to the antidiuretic effect of arginine vasopressin (AVP), resulting in polyuria, polydipsia, and hypoosmolar urine. In the vast majority of cases, NDI is associated with germ-line mutations in the vasopressin receptor type 2 gene (AVPR2) and in about 8% of the cases with the water channel aquaporin-2 gene (AQP-2) mutations. To date, approximately 277 families with 185 germ-line mutations in the AVPR2 gene have been described worldwide. In the present study, the AVPR2 gene was genotyped in eight unrelated Brazilian kindred with NDI. In five of these NDI families, novel mutations were noted (S54R, I130L, S187R, 219delT, and R230P), whereas three seemingly unrelated probands were found to harbor previously described AVPR2 gene mutations (R106C, R137H, R337X). Additionally a novel polymorphism (V281V) was detected. In conclusion, although NDI is a rare disease, the findings of mutations scattered over the entire coding region of the AVPR2 gene are a valuable model to determine structure function relationship in G-protein-coupled receptor related diseases. Furthermore, our data indicate that in Brazil the spectrum of AVPR2 gene mutations is "family specific".  相似文献   

10.
X-linked nephrogenic diabetes insipidus (NDI) is a rare disease with defective renal and extrarenal arginine-vasopressin V2 receptor responses due to mutations in the AVPR2 gene in Xq28. We analyzed 31 independent NDI families to determine the nature and recurrence of AVPR2 mutations. Twenty-one new putative disease-causing mutations were identified: 113delCT, 253del35, 255del9, 274insG, V88M, R106C, 402delCT, C112R, Y124X, S126F, W164S, S167L, 684delTA, 804insG, W284X, A285P, W293X, R337X, and three large deletions or gene rearrangements. Five other mutations—R113W, Y128S, R137H, R181C, and R202C—that previously had been reported in other families were detected. There was evidence for recurrent mutation for four mutations (R113W, R137H, S167L, and R337X). Eight de novo mutation events were detected (274insG, R106C, Y128S, 167L [twice], R202C, 684delTA, and R337X). The origins were maternal (one), grandmaternal (one), and grandpaternal (six). In the 31 NDI families and 6 families previously reported by us, there is evidence both for mutation hot spots for nucleotide substitutions and for small deletions and insertions. More than half (58%) of the nucleotide substitutions in 26 families could be a consequence of 5-methylcytosine deamination at a CpG dinucleotide. Most of the small deletions and insertions could be attributed to slipped mispairing during DNA replication.  相似文献   

11.
Summary We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3-TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

12.
We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3–TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

13.
The vasopressin V2 receptor (V2R) and the aquaporin-2 genes of two unrelated male patients with congenital nephrogenic diabetes insipidus were analyzed. The V2R gene of the patient of family 1 had the wild-type sequence. Consequently, the coding region of the aquaporin-2 gene including the exon-intron junctions was sequenced. A novel G to T transversion at codon 202, predictive of an exchange of tryptophan 202 by cysteine, was identified. As the mutation occurs at G-1 of the 5′ splice donor site of intron 3, aberrant splicing is also likely. The mutation involves one of the supposed water pore-forming loops. Therefore, both aberrant splicing and amino acid substitution are likely to result in a functionally defective protein. Sequencing of the complete V2R gene of the male patient of family 2 revealed a novel single-base deletion at codon 310 (ΔC1001), shifting the reading frame to give an altered amino acid sequence beginning at codon 311. The mutation is unique in predicting a C-terminally extended protein (termination after codon 434 in the mutant receptor instead of codon 371 in the wild-type). The deduced mutant protein is likely to be nonfunctional since the amino acid sequence of the seventh transmembrane domain and the C-terminus is altered. Received: 5 March 1996 / Revised: 30 May 1996  相似文献   

14.
Over 155 mutations within the V2 vasopressin receptor (AVPR2) gene are responsible for nephrogenic diabetes insipidus (NDI). The expression and subcellular distribution of four of these was investigated in transfected cells. These include a point mutation in the seventh transmembrane domain (S315R), a frameshift mutation in the third intracellular loop (804delG), and two nonsense mutations that code for AVPR2 truncated within the first cytoplasmic loop (W71X) and in the proximal portion of the carboxyl tail (R337X). RT-PCR revealed that mRNA was produced for all mutant receptor constructs. However, no receptor protein, as assessed by Western blot analysis, was detected for 804delG. The S315R was properly processed through the Golgi and targeted to the plasma membrane but lacked any detectable AVP binding or signaling. Thus, this mutation induces a conformational change that is compatible with endoplasmic reticulum (ER) export but dramatically affects hormone recognition. In contrast, the W71X and R337X AVPR2 were retained inside the cell as determined by immunofluorescence. Confocal microscopy revealed that they were both retained in the ER. To determine if calnexin could be involved, its interaction with the AVPR2 was assessed. Sequential coimmunoprecipitation demonstrated that calnexin associated with the precursor forms of both wild-type (WT) and mutant receptors in agreement with its general role in protein folding. Moreover, its association with the ER-retained R337X mutant was found to be longer than with the WT receptor suggesting that this molecular chaperone also plays a role in quality control and ER retention of misfolded G protein-coupled receptors.  相似文献   

15.
We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent β-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2. These findings have been supported by co-localization observed using confocal microscopy. This norepinephrine-dependent β-arrestin recruitment was inhibited not only by the α(1)AR antagonist Terazosin but also by the CXCR2-specific allosteric inverse agonist SB265610. Furthermore, Labetalol, which is marketed for hypertension as a nonselective β-adrenoceptor antagonist with α(1)AR antagonist properties, was identified as a heteromer-specific-biased agonist exhibiting partial agonism for inositol phosphate production but essentially full agonism for β-arrestin recruitment at the α(1A)AR-CXCR2 heteromer. Finally, bioluminescence resonance energy transfer studies with both receptors tagged suggest that α(1A)AR-CXCR2 heteromerization occurs constitutively and is not modulated by ligand. These findings support the concept of GPCR heteromer complexes exhibiting distinct pharmacology, thereby providing additional mechanisms through which GPCRs can potentially achieve their diverse biological functions. This has important implications for the use and future development of pharmaceuticals targeting these receptors.  相似文献   

16.
Three main pathways have been implicated in desensitization of receptors that stimulate adenylylcyclase (AC): cAMP-mediated phosphorylation; cAMP-independent phosphorylation, and receptor internalization. Cell lines derived from the murine Ltk- cell were found useful in exploring the contribution of cAMP-dependent phosphorylation in V2 vasopressin receptor desensitization. The HTB-2 cell expresses the human V2 vasopressin receptor, introduced by transfection of human genomic DNA, and the prostaglandin E1 (PGE1) receptor, endogenous to the Ltk- cell. The A7 cell expresses the hamster beta 2-adrenoceptor, which undergoes the above-mentioned desensitization processes. Treatment of HTB-2 cells with arginine-vasopressin (AVP) had no effect on AC responsiveness to PGE1, but promoted desensitization of the AVP response. This was seen as a 5-6-fold right shift in the dose-response curves for AVP action (cAMP accumulation in intact cells and AC stimulation in homogenates and isolated membranes) and in a decrease in the maximum effect of AVP on these parameters. AVP treatment caused a decrease in cell surface receptors to approximately 75% of control without changes in KD, as determined by Scatchard analysis. When cAMP was increased by treatment with 10 microM PGE1 and isobutylmethylxanthine, desensitization of the PGE1 receptor was observed but not of the AVP receptor. In A7 cells the same treatment caused, as expected, a 3-fold right shift in the dose-response curve for AC stimulation by isoproterenol, indicating that L cells can mediate heterologous desensitization. These data demonstrate that the V2 vasopressin and the PGE1 receptors undergo homologous desensitization in the absence of cAMP-mediated phosphorylation and that this component is not required for vasopressin receptor internalization.  相似文献   

17.
The renal vasopressin V(2) receptor (V(2)R) plays a critical role in physiological and pathophysiological processes associated with arginine vasopressin (AVP)-induced antidiuresis. Because clinical data suggests that females may be more prone to hyponatremia from AVP-mediated antidiuresis, we investigated whether there are sex differences in the expression and function of the renal V(2)R. In normal Sprague-Dawley rat kidneys, V(2)R mRNA and protein expression was 2.6- and 1.7-fold higher, respectively, in females compared with males. To investigate the potential physiological implications of this sex difference, we studied changes in urine osmolality induced by the AVP V(2)R agonist desmopressin. In response to different doses of desmopressin, there was a graded increase in urine osmolality and decrease in urine volume during a 24-h infusion. Females showed greater mean increases in urine osmolality and greater mean decreases in urine volume at 0.5 and 5.0 ng/h infusion rates. We also studied renal escape from antidiuresis produced by water loading in rats infused with desmopressin (5.0 ng/h). After 5 days of water loading, urine osmolality of both female and male rats escaped to the same degree physiologically, but V(2)R mRNA and protein in female kidneys was reduced to a greater degree (-63% and -73%, respectively) than in males (-32% and -48%, respectively). By the end of the 5-day escape period, renal V(2)R mRNA and protein expression were reduced to the same relative levels in males and females, thereby abolishing the sex differences in V(2)R expression seen in the basal state. Our results demonstrate that female rats express significantly more V(2)R mRNA and protein in kidneys than males, and that this results physiologically in a greater sensitivity to V(2)R agonist administration. The potential pathophysiological implications of these results are that females may be more susceptible to the development of dilutional hyponatremia because of a greater sensitivity to endogenously secreted AVP.  相似文献   

18.
Vasopressin (AVP) and CRH synergistically regulate adrenocorticotropin and insulin release at the level of the pituitary and pancreas, respectively. Here, we first extended these AVP and CRH coregulation processes to the adrenal medulla. We demonstrate that costimulation of chromaffin cells by AVP and CRH simultaneously induces a catecholamine secretion exceeding the one induced by each hormone alone, thus demonstrating a net potentiation. To further elucidate the molecular mechanisms underlying this synergism, we coexpressed human V1b and CRH receptor (CRHR)1 receptor in HEK293 cells. In this heterologous system, AVP also potentiated CRH-stimulated cAMP accumulation in a dose-dependent and saturable manner. This effect was only partially mimicked by phorbol ester or inhibited by a phospholipase C inhibitor respectively. This finding suggests the existence of an new molecular mechanism, independent from second messenger cross talk. Similarly, CRH potentiated the AVP-induced inositol phosphates production. Using bioluminescence resonance energy transfer, coimmunoprecipitation, and receptor rescue experiments, we demonstrate that V1b and CRHR1 receptors assemble as heterodimers. Moreover, new pharmacological properties emerged upon receptors cotransfection. Taken together, these data strongly suggest that direct molecular interactions between V1b and CRHR1 receptors play an important role in mediating the synergistic interactions between these two receptors.  相似文献   

19.
Toad urinary bladder epithelial cells grown in culture (primary) show a significant increase in water-soluble inositol phosphates when treated with 10(-8) M vasopressin (AVP), but not with (1-deamino-8-D-arginine)vasopressin (dDAVP), a V2-agonist. The increase in inositol phosphates was blocked by the V1-antagonist, d(CH2)5Tyr(Me)AVP, suggesting a V1-coupled phosphoinositide breakdown. The V1-antagonist had no effect on basal adenylate cyclase activity nor on that stimulated by AVP. However, the V1-antagonist was found to attenuate the hydrosmotic response of AVP, suggesting some role of the V1-receptor cascade in the water flow response. Mezerein (MZ), a non-phorbol activator of protein kinase C (PKC) increased osmotic water flow when added to the mucosal surface. The response was less in magnitude and occurred over a longer period (90 min) than that observed with AVP. In an attempt to emulate the V1-response, activation of PKC, and an increase in intracellular calcium, toad bladders were incubated with MZ and the calcium ionophore A23187 (IP). It was found that IP enhanced the water flow response to MZ at all times measured. Mz and IP were also found to enhance cAMP-mediated water flow, suggesting that apical membrane permeability may be regulated in part through V1-receptor stimulation and its respective second messengers. Collectively, these observations suggest that the V1 receptor may play a role not only as part of a negative feedback system, but also as an integral component of the enhanced water permeability that occurs at the apical membrane.  相似文献   

20.
To identify molecules that might contribute to V2 vasopressin receptor (V2R) trafficking or signaling, we searched for novel interacting proteins with this receptor. Preliminary data, using the V2R C terminus as bait in a yeast two-hybrid screen, revealed calmodulin as a binding partner. Because calmodulin interacts with other G protein-coupled receptors, we explored this interaction and its possible functional relevance in greater detail. A Ca2+ -dependent interaction occurs between calmodulin-linked agarose and the holo-V2R as well as the V2R C terminus. Truncation and site-directed mutagenesis of the V2R C terminus revealed an involvement of an RGR sequence in this interaction. NMR studies showed that a peptide fragment of the V2R C terminus containing the RGR sequence binds to calmodulin in a Ca2+ -dependent manner with a Kd < or =1.5 microm; concentration-dependent binding of the V2R C terminus to calmodulin-agarose was used to estimate a Kd value of approximately 200 nm for this entire C-terminal sequence as expressed in mammalian cells. Madin-Darby canine kidney II cells stably expressing either wild type or a mutant V2R, in which the RGR C-terminal sequence was mutated to alanines (AAA V2R), revealed that the steady-state localization and agonist-induced internalization of the AAA V2R resembled that of the wild type V2R in polarized Madin-Darby canine kidney II cells. V2R binding of agonist similarly was unchanged in the AAA V2R, as was the concentration response for arginine vasopressin (AVP)-stimulated cAMP accumulation. Most interestingly, AVP-induced increases in intracellular Ca2+ observed for the wild type V2R were virtually eliminated for the AAA V2R. Taken together, the data suggest that a C-terminal region of the V2R important for calmodulin interaction is also important in modulation of V2R elevation of intracellular Ca2+, a prerequisite for AVP-induced fusion of aquaporin-containing vesicles with the apical surface of renal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号