首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment—previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches—yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.  相似文献   

3.
4.
5.
Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.  相似文献   

6.
7.
While a huge amount of information about biological literature can be obtained by searching the PubMed database, reading through all the titles and abstracts resulting from such a search for useful information is inefficient. Text mining makes it possible to increase this efficiency. Some websites use text mining to gather information from the PubMed database; however, they are database-oriented, using pre-defined search keywords while lacking a query interface for user-defined search inputs. We present the PubMed Abstract Reading Helper (PubstractHelper) website which combines text mining and reading assistance for an efficient PubMed search. PubstractHelper can accept a maximum of ten groups of keywords, within each group containing up to ten keywords. The principle behind the text-mining function of PubstractHelper is that keywords contained in the same sentence are likely to be related. PubstractHelper highlights sentences with co-occurring keywords in different colors. The user can download the PMID and the abstracts with color markings to be reviewed later. The PubstractHelper website can help users to identify relevant publications based on the presence of related keywords, which should be a handy tool for their research.

Availability

http://bio.yungyun.com.tw/ATM/PubstractHelper.aspx and http://holab.med.ncku.edu.tw/ATM/PubstractHelper.aspx  相似文献   

8.
9.
Aggregatibacter actinomycetemcomitans is a major etiological agent of periodontitis. Here we report the complete genome sequence of serotype c strain D11S-1, which was recovered from the subgingival plaque of a patient diagnosed with generalized aggressive periodontitis.Aggregatibacter actinomycetemcomitans is a major etiologic agent of human periodontal disease, in particular aggressive periodontitis (12). The natural population of A. actinomycetemcomitans is clonal (7). Six A. actinomycetemcomitans serotypes are distinguished based on the structural and serological characteristics of the O antigen of LPS (6, 7). Three of the serotypes (a, b, and c) comprise >80% of all strains, and each serotype represents a distinct clonal lineage (1, 6, 7). Serotype c strain D11S-1 was cultured from a subgingival plaque sample of a patient diagnosed with generalized aggressive periodontitis. The complete genome sequencing of the strain was determined by 454 pyrosequencing (10), which achieved 25× coverage. Assembly was performed using the Newbler assembler (454, Branford, CT) and generated 199 large contigs, with 99.3% of the bases having a quality score of 40 and above. The contigs were aligned with the genome of the sequenced serotype b strain HK1651 (http://www.genome.ou.edu/act.html) using software written in house. The putative contig gaps were then closed by primer walking and sequencing of PCR products over the gaps. The final genome assembly was further confirmed by comparison of an in silico NcoI restriction map to the experimental map generated by optical mapping (8). The genome structure of the D11S-1 strain was compared to that of the sequenced strain HK1651 using the program MAUVE (2, 3). The automated annotation was done using a protocol similar to the annotation engine service at The Institute for Genomic Research/J. Craig Venter Institute with some local modifications. Briefly, protein-coding genes were identified using Glimmer3 (4). Each protein sequence was then annotated by comparing to the GenBank nonredundant protein database. BLAST-Extend-Repraze was applied to the predicted genes to identify genes that might have been truncated due to a frameshift mutation or premature stop codon. tRNA and rRNA genes were identified by using tRNAScan-SE (9) and a similarity search to our in-house RNA database, respectively.The D11S-1 circular genome contains 2,105,764 nucleotides, a GC content of 44.55%, 2,134 predicted coding sequences, and 54 tRNA and 19 rRNA genes (see additional data at http://expression.washington.edu/bumgarnerlab/publications.php). The distribution of predicted genes based on functional categories was similar between D11S-1 and HK1651 (http://expression.washington.edu/bumgarnerlab/publications.php). One hundred six and 86 coding sequences were unique to strain D11S-1 and HK1651, respectively (http://expression.washington.edu/bumgarnerlab/publications.php). Genomic islands were identified based on annotations for strain HK1651 and based on manual inspection of contiguous D11S-1 specific DNA regions with G+C bias (http://expression.washington.edu/bumgarnerlab/publications.php). Among 12 identified genomics islands, 5 (B, C, D, E and G; cytolethal distending toxin gene cluster, tight adherence gene cluster, O-antigen biosynthesis and transport gene cluster, leukotoxin gene cluster, and lipoligosaccharide biosynthesis enzyme gene, respectively) correspond to islands 2 to 5 and 8 of strain HK1651 (http://www.oralgen.lanl.gov/) (5). Island F (∼5 kb) is homologous to a portion of the 12.5-kb island 7 in HK1651. Five genomic islands (H to L) were unique to strain D11S-1. The remaining island (A) is a fusion of genomic islands 1 and 6, in strain HK1651. The genome of D11S-1 is largely in synteny with the genome of the sequenced serotype b strain HK1651 but contained several large-scale genomic rearrangements.Strain D11S-1 harbors a 43-kb bacteriophage and two plasmids of 31 and 23 kb (http://expression.washington.edu/bumgarnerlab/publications.php). Excluding an ∼9-kb region of low homology, the phage showed >90% nucleotide sequence identity with AaΦ23 (11). A 49-bp attB site (11) was identified at coordinates 2,024,825 to 2,024,873. The location of the inserted phage was identified in the optical map of strain D11S-1 and further confirmed by PCR amplification and sequencing of the regions flanking the insertion site. A closed circular form of the phage was also detected in strain D11S-1 by PCR analysis of the phage ends. The 23-kb plasmid is homologous to pVT745 (92% nucleotide identities). The 31-kb plasmid is a novel plasmid. It has significant homologies in short regions (<2 kb) to Haemophilus influenzae biotype aegyptius plasmid pF1947 and other plasmids.  相似文献   

10.

Background

Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm.

Results

NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms’ niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds.

Conclusions

The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.  相似文献   

11.

Motivation

Type III Secretion Systems (T3SSs) play important roles in the interaction between gram-negative bacteria and their hosts. T3SSs function by translocating a group of bacterial effector proteins into the host cytoplasm. The details of specific type III secretion process are yet to be clarified. This research focused on comparing the amino acid composition within the N-terminal 100 amino acids from type III secretion (T3S) signal sequences or non-T3S proteins, specifically whether each residue exerts a constraint on residues found in adjacent positions. We used these comparisons to set up a statistic model to quantitatively model and effectively distinguish T3S effectors.

Results

In this study, the amino acid composition (Aac) probability profiles conditional on its sequentially preceding position and corresponding amino acids were compared between N-terminal sequences of T3S and non-T3S proteins. The profiles are generally different. A Markov model, namely T3_MM, was consequently designed to calculate the total Aac conditional probability difference, i.e., the likelihood ratio of a sequence being a T3S or a non-T3S protein. With T3_MM, known T3S and non-T3S proteins were found to well approximate two distinct normal distributions. The model could distinguish validated T3S and non-T3S proteins with a 5-fold cross-validation sensitivity of 83.9% at a specificity of 90.3%. T3_MM was also shown to be more robust, accurate, simple, and statistically quantitative, when compared with other T3S protein prediction models. The high effectiveness of T3_MM also indicated the overall Aac difference between N-termini of T3S and non-T3S proteins, and the constraint of Aac exerted by its preceding position and corresponding Aac.

Availability

An R package for T3_MM is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/T3_MM. T3_MM web server: http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php.  相似文献   

12.
13.
We present Quip, a lossless compression algorithm for next-generation sequencing data in the FASTQ and SAM/BAM formats. In addition to implementing reference-based compression, we have developed, to our knowledge, the first assembly-based compressor, using a novel de novo assembly algorithm. A probabilistic data structure is used to dramatically reduce the memory required by traditional de Bruijn graph assemblers, allowing millions of reads to be assembled very efficiently. Read sequences are then stored as positions within the assembled contigs. This is combined with statistical compression of read identifiers, quality scores, alignment information and sequences, effectively collapsing very large data sets to <15% of their original size with no loss of information. Availability: Quip is freely available under the 3-clause BSD license from http://cs.washington.edu/homes/dcjones/quip.  相似文献   

14.
Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information. A high-quality ground truth standard can greatly facilitate the development of an automated system. This article describes DeTEXT: A database for evaluating text extraction from biomedical literature figures. It is the first publicly available, human-annotated, high quality, and large-scale figure-text dataset with 288 full-text articles, 500 biomedical figures, and 9308 text regions. This article describes how figures were selected from open-access full-text biomedical articles and how annotation guidelines and annotation tools were developed. We also discuss the inter-annotator agreement and the reliability of the annotations. We summarize the statistics of the DeTEXT data and make available evaluation protocols for DeTEXT. Finally we lay out challenges we observed in the automated detection and recognition of figure text and discuss research directions in this area. DeTEXT is publicly available for downloading at http://prir.ustb.edu.cn/DeTEXT/.  相似文献   

15.
Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time and quadratic space , is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.  相似文献   

16.
The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads (25–70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome. We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.  相似文献   

17.
The availability of genomic sequences of many organisms has opened new challenges in many aspects particularly in terms of genome analysis. Sequence extraction is a vital step and many tools have been developed to solve this issue. These tools are available publically but have limitations with reference to the sequence extraction, length of the sequence to be extracted, organism specificity and lack of user friendly interface. We have developed a java based software package having three modules which can be used independently or sequentially. The tool efficiently extracts sequences from large datasets with few simple steps. It can efficiently extract multiple sequences of any desired length from a genome of any organism. The results are crosschecked by published data.

Availability

URL 1: http://ww3.comsats.edu.pk/bio/ResearchProjects.aspxURL 2: http://ww3.comsats.edu.pk/bio/SequenceManeuverer.aspx  相似文献   

18.

Background

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium. Infections with the bacterium could become systemic and can be life-threatening to immunocompromised individuals. Genome sequences of a few clinical isolates of V. parahaemolyticus are currently available, but the genome dynamics across the species and virulence potential of environmental strains on a genome-scale have not been described before.

Results

Here we present genome sequences of four V. parahaemolyticus clinical strains from stool samples of patients and five environmental strains in Hong Kong. Phylogenomics analysis based on single nucleotide polymorphisms revealed a clear distinction between the clinical and environmental isolates. A new gene cluster belonging to the biofilm associated proteins of V. parahaemolyticus was found in clincial strains. In addition, a novel small genomic island frequently found among clinical isolates was reported. A few environmental strains were found harboring virulence genes and prophage elements, indicating their virulence potential. A unique biphenyl degradation pathway was also reported. A database for V. parahaemolyticus (http://kwanlab.bio.cuhk.edu.hk/vp) was constructed here as a platform to access and analyze genome sequences and annotations of the bacterium.

Conclusions

We have performed a comparative genomics analysis of clinical and environmental strains of V. parahaemolyticus. Our analyses could facilitate understanding of the phylogenetic diversity and niche adaptation of this bacterium.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1135) contains supplementary material, which is available to authorized users.  相似文献   

19.
Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences. Previous programs designed for this task have been relatively slow and computationally expensive, forcing researchers to use faster abundance estimation programs, which only classify small subsets of metagenomic data. Using exact alignment of k-mers, Kraken achieves classification accuracy comparable to the fastest BLAST program. In its fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per minute, 909 times faster than Megablast and 11 times faster than the abundance estimation program MetaPhlAn. Kraken is available at http://ccb.jhu.edu/software/kraken/.  相似文献   

20.
Conventional short read sequences derived from haploid DNA were extended into long super-reads enabling assembly of the massive 22 Gbp loblolly pine, Pinus taeda, genome.See related research http://genomebiology.com/2014/15/3/R59  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号